GenStereo / app.py
FQiao's picture
Upload 144 files
b4754db verified
raw
history blame
8.42 kB
import os
from os.path import basename, splitext, join
import tempfile
import gradio as gr
import numpy as np
from PIL import Image
import torch
import cv2
from torchvision.transforms.functional import to_tensor, to_pil_image
from torch import Tensor
from genstereo import GenStereo, AdaptiveFusionLayer
import ssl
from huggingface_hub import hf_hub_download
from extern.DAM2.depth_anything_v2.dpt import DepthAnythingV2
ssl._create_default_https_context = ssl._create_unverified_context
IMAGE_SIZE = 512
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
CHECKPOINT_NAME = 'genstereo'
def download_models():
models = [
{
'repo': 'stabilityai/sd-vae-ft-mse',
'sub': None,
'dst': 'checkpoints/sd-vae-ft-mse',
'files': ['config.json', 'diffusion_pytorch_model.safetensors'],
'token': None
},
{
'repo': 'lambdalabs/sd-image-variations-diffusers',
'sub': 'image_encoder',
'dst': 'checkpoints',
'files': ['config.json', 'pytorch_model.bin'],
'token': None
},
{
'repo': 'FQiao/GenStereo',
'sub': None,
'dst': 'checkpoints/genstereo',
'files': ['config.json', 'denoising_unet.pth', 'fusion_layer.pth', 'pose_guider.pth', 'reference_unet.pth'],
'token': None
},
{
'repo': 'depth-anything/Depth-Anything-V2-Large',
'sub': None,
'dst': 'checkpoints',
'files': [f'depth_anything_v2_vitl.pth'],
'token': None
}
]
for model in models:
for file in model['files']:
hf_hub_download(
repo_id=model['repo'],
subfolder=model['sub'],
filename=file,
local_dir=model['dst'],
token=model['token']
)
# Setup.
download_models()
# DepthAnythingV2
if 'dam2' not in globals():
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder = 'vitl'
encoder_size_map = {'vits': 'Small', 'vitb': 'Base', 'vitl': 'Large'}
if encoder not in encoder_size_map:
raise ValueError(f"Unsupported encoder: {encoder}. Supported: {list(encoder_size_map.keys())}")
dam2 = DepthAnythingV2(**model_configs[encoder])
dam2_checkpoint = f'checkpoints/depth_anything_v2_{encoder}.pth'
dam2.load_state_dict(torch.load(dam2_checkpoint, map_location='cpu'))
dam2 = dam2.to(DEVICE).eval()
# GenStereo
if 'genstereo' not in globals():
genwarp_cfg = dict(
pretrained_model_path='checkpoints',
checkpoint_name=CHECKPOINT_NAME,
half_precision_weights=True
)
genstereo = GenStereo(cfg=genwarp_cfg, device=DEVICE)
# Adaptive Fusion
if 'fusion_model' not in globals():
fusion_model = AdaptiveFusionLayer()
fusion_checkpoint = join('checkpoints', CHECKPOINT_NAME, 'fusion_layer.pth')
fusion_model.load_state_dict(torch.load(fusion_checkpoint))
fusion_model = fusion_model.to(DEVICE).eval()
# Crop the image to the shorter side.
def crop(img: Image) -> Image:
W, H = img.size
if W < H:
left, right = 0, W
top, bottom = np.ceil((H - W) / 2.), np.floor((H - W) / 2.) + W
else:
left, right = np.ceil((W - H) / 2.), np.floor((W - H) / 2.) + H
top, bottom = 0, H
return img.crop((left, top, right, bottom))
# Gradio app
with tempfile.TemporaryDirectory() as tmpdir:
with gr.Blocks(
title='StereoGen Demo',
css='img {display: inline;}'
) as demo:
# Internal states.
src_image = gr.State()
src_depth = gr.State()
proj_mtx = gr.State()
src_view_mtx = gr.State()
# Blocks.
gr.Markdown(
"""
# StereoGen: Towards Open-World Generation of Stereo Images and Unsupervised Matching
[![Project Site](https://img.shields.io/badge/Project-Web-green)](https://qjizhi.github.io/genstereo) &nbsp;
[![Spaces](https://img.shields.io/badge/Spaces-Demo-yellow?logo=huggingface)](https://huggingface.co/spaces/FQiao/GenStereo) &nbsp;
[![Github](https://img.shields.io/badge/Github-Repo-orange?logo=github)](https://github.com/Qjizhi/GenStereo) &nbsp;
[![Models](https://img.shields.io/badge/Models-checkpoints-blue?logo=huggingface)](https://huggingface.co/FQiao/GenStereo/tree/main) &nbsp;
[![arXiv](https://img.shields.io/badge/arXiv-2405.17251-red?logo=arxiv)]()
## Introduction
This is an official demo for the paper "[Towards Open-World Generation of Stereo Images and Unsupervised Matching](https://qjizhi.github.io/genstereo)". Given an arbitrary reference image, GenStereo can generate the corresponding right-view image.
## How to Use
1. Upload a reference image to "Left Image"
- You can also select an image from "Examples"
3. Hit "Generate a right image" button and check the result
"""
)
file = gr.File(label='Left', file_types=['image'])
examples = gr.Examples(
examples=['./assets/COCO_val2017_000000070229.jpg',
'./assets/COCO_val2017_000000092839.jpg',
'./assets/KITTI2015_000003_10.png',
'./assets/KITTI2015_000147_10.png'],
inputs=file
)
with gr.Row():
image_widget = gr.Image(
label='Depth', type='filepath',
interactive=False
)
depth_widget = gr.Image(label='Estimated Depth', type='pil')
# Add scale factor slider
scale_slider = gr.Slider(
label='Scale Factor',
minimum=1.0,
maximum=30.0,
value=15.0,
step=0.1,
)
button = gr.Button('Generate a right image', size='lg', variant='primary')
with gr.Row():
warped_widget = gr.Image(
label='Warped Image', type='pil', interactive=False
)
gen_widget = gr.Image(
label='Generated Right', type='pil', interactive=False
)
def normalize_disp(disp):
return (disp - disp.min()) / (disp.max() - disp.min())
# Callbacks
def cb_mde(image_file: str):
if not image_file:
# Return None if no image is provided (e.g., when file is cleared).
return None, None, None, None
image = crop(Image.open(image_file).convert('RGB')) # Load image using PIL
image = image.resize((IMAGE_SIZE, IMAGE_SIZE))
image_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
depth_dam2 = dam2.infer_image(image_bgr)
depth = torch.tensor(depth_dam2).unsqueeze(0).unsqueeze(0).float().cuda()
depth_image = cv2.applyColorMap((normalize_disp(depth_dam2) * 255).astype(np.uint8), cv2.COLORMAP_JET)
return image, depth_image, image, depth
def cb_generate(image, depth: Tensor, scale_factor):
norm_disp = normalize_disp(depth)
disp = norm_disp * scale_factor / 100 * IMAGE_SIZE
renders = genstereo(
src_image=image,
src_disparity=disp,
ratio=None,
)
warped = (renders['warped'] + 1) / 2
synthesized = renders['synthesized']
mask = renders['mask']
fusion_image = fusion_model(synthesized.float(), warped.float(), mask.float())
warped_pil = to_pil_image(warped[0])
fusion_pil = to_pil_image(fusion_image[0])
return warped_pil, fusion_pil
# Events
file.change(
fn=cb_mde,
inputs=file,
outputs=[image_widget, depth_widget, src_image, src_depth]
)
button.click(
fn=cb_generate,
inputs=[src_image, src_depth, scale_slider],
outputs=[warped_widget, gen_widget]
)
demo.launch(share=True)