|
""" |
|
Born out of Depth Anything V1 Issue 36 |
|
Make sure you have the necessary libraries installed. |
|
Code by @1ssb |
|
|
|
This script processes a set of images to generate depth maps and corresponding point clouds. |
|
The resulting point clouds are saved in the specified output directory. |
|
|
|
Usage: |
|
python script.py --encoder vitl --load-from path_to_model --max-depth 20 --img-path path_to_images --outdir output_directory --focal-length-x 470.4 --focal-length-y 470.4 |
|
|
|
Arguments: |
|
--encoder: Model encoder to use. Choices are ['vits', 'vitb', 'vitl', 'vitg']. |
|
--load-from: Path to the pre-trained model weights. |
|
--max-depth: Maximum depth value for the depth map. |
|
--img-path: Path to the input image or directory containing images. |
|
--outdir: Directory to save the output point clouds. |
|
--focal-length-x: Focal length along the x-axis. |
|
--focal-length-y: Focal length along the y-axis. |
|
""" |
|
|
|
import argparse |
|
import cv2 |
|
import glob |
|
import numpy as np |
|
import open3d as o3d |
|
import os |
|
from PIL import Image |
|
import torch |
|
|
|
from depth_anything_v2.dpt import DepthAnythingV2 |
|
|
|
|
|
def main(): |
|
|
|
parser = argparse.ArgumentParser(description='Generate depth maps and point clouds from images.') |
|
parser.add_argument('--encoder', default='vitl', type=str, choices=['vits', 'vitb', 'vitl', 'vitg'], |
|
help='Model encoder to use.') |
|
parser.add_argument('--load-from', default='', type=str, required=True, |
|
help='Path to the pre-trained model weights.') |
|
parser.add_argument('--max-depth', default=20, type=float, |
|
help='Maximum depth value for the depth map.') |
|
parser.add_argument('--img-path', type=str, required=True, |
|
help='Path to the input image or directory containing images.') |
|
parser.add_argument('--outdir', type=str, default='./vis_pointcloud', |
|
help='Directory to save the output point clouds.') |
|
parser.add_argument('--focal-length-x', default=470.4, type=float, |
|
help='Focal length along the x-axis.') |
|
parser.add_argument('--focal-length-y', default=470.4, type=float, |
|
help='Focal length along the y-axis.') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' |
|
|
|
|
|
model_configs = { |
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, |
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} |
|
} |
|
|
|
|
|
depth_anything = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth}) |
|
depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu')) |
|
depth_anything = depth_anything.to(DEVICE).eval() |
|
|
|
|
|
if os.path.isfile(args.img_path): |
|
if args.img_path.endswith('txt'): |
|
with open(args.img_path, 'r') as f: |
|
filenames = f.read().splitlines() |
|
else: |
|
filenames = [args.img_path] |
|
else: |
|
filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True) |
|
|
|
|
|
os.makedirs(args.outdir, exist_ok=True) |
|
|
|
|
|
for k, filename in enumerate(filenames): |
|
print(f'Processing {k+1}/{len(filenames)}: {filename}') |
|
|
|
|
|
color_image = Image.open(filename).convert('RGB') |
|
width, height = color_image.size |
|
|
|
|
|
image = cv2.imread(filename) |
|
pred = depth_anything.infer_image(image, height) |
|
|
|
|
|
resized_pred = Image.fromarray(pred).resize((width, height), Image.NEAREST) |
|
|
|
|
|
x, y = np.meshgrid(np.arange(width), np.arange(height)) |
|
x = (x - width / 2) / args.focal_length_x |
|
y = (y - height / 2) / args.focal_length_y |
|
z = np.array(resized_pred) |
|
points = np.stack((np.multiply(x, z), np.multiply(y, z), z), axis=-1).reshape(-1, 3) |
|
colors = np.array(color_image).reshape(-1, 3) / 255.0 |
|
|
|
|
|
pcd = o3d.geometry.PointCloud() |
|
pcd.points = o3d.utility.Vector3dVector(points) |
|
pcd.colors = o3d.utility.Vector3dVector(colors) |
|
o3d.io.write_point_cloud(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + ".ply"), pcd) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|