|
import gradio as gr |
|
import numpy as np |
|
import time |
|
import math |
|
import random |
|
import torch |
|
import spaces |
|
|
|
from diffusers import StableDiffusionXLInpaintPipeline |
|
from PIL import Image, ImageFilter |
|
from pillow_heif import register_heif_opener |
|
|
|
register_heif_opener() |
|
|
|
max_64_bit_int = np.iinfo(np.int32).max |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
floatType = torch.float16 |
|
else: |
|
device = "cpu" |
|
floatType = torch.float32 |
|
|
|
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype = floatType) |
|
pipe = pipe.to(device) |
|
|
|
def update_seed(is_randomize_seed, seed): |
|
if is_randomize_seed: |
|
return random.randint(0, max_64_bit_int) |
|
return seed |
|
|
|
def toggle_debug( |
|
is_debug_mode, |
|
repeating_horizontally, |
|
repeating_vertically |
|
): |
|
if is_debug_mode: |
|
return [ |
|
gr.update(visible = True), |
|
gr.update(visible = repeating_horizontally), |
|
gr.update(visible = repeating_horizontally), |
|
gr.update(visible = repeating_vertically), |
|
gr.update(visible = repeating_vertically), |
|
gr.update(visible = (repeating_horizontally and repeating_vertically)), |
|
gr.update(visible = (repeating_horizontally and repeating_vertically)) |
|
] |
|
return [gr.update(visible = False)] * 7 |
|
|
|
def flip(input_image, horizontally_flipped, vertically_flipped): |
|
image_height, image_width, dummy_channel = np.array(input_image).shape |
|
|
|
fliped_image = Image.new(mode = input_image.mode, size = (image_width, image_height), color = "black") |
|
middle_width = image_width // 2 |
|
middle_height = image_height // 2 |
|
|
|
if horizontally_flipped and vertically_flipped: |
|
fliped_image.paste(input_image, (middle_width, middle_height)) |
|
fliped_image.paste(input_image, (middle_width - image_width, middle_height)) |
|
fliped_image.paste(input_image, (middle_width, middle_height - image_height)) |
|
fliped_image.paste(input_image, (middle_width - image_width, middle_height - image_height)) |
|
elif horizontally_flipped: |
|
fliped_image.paste(input_image, (middle_width, 0)) |
|
fliped_image.paste(input_image, (middle_width - image_width, 0)) |
|
elif vertically_flipped: |
|
fliped_image.paste(input_image, (0, middle_height)) |
|
fliped_image.paste(input_image, (0, middle_height - image_height)) |
|
|
|
return fliped_image |
|
|
|
def blur(input_image, radius): |
|
image_height, image_width, dummy_channel = np.array(input_image).shape |
|
|
|
duplicated_image = Image.new(mode = input_image.mode, size = (image_width * 3, image_height * 3), color = "black") |
|
for i in range(3): |
|
for j in range(3): |
|
duplicated_image.paste(input_image, (image_width * i, image_height * j)) |
|
duplicated_image = duplicated_image.filter(ImageFilter.GaussianBlur(radius)) |
|
blurred_image = Image.new(mode = input_image.mode, size = (image_width, image_height), color = "black") |
|
blurred_image.paste(duplicated_image, (-image_width, -image_height)) |
|
|
|
return blurred_image |
|
|
|
def mask(input_image, enlarge_left, enlarge_right, enlarge_top, enlarge_bottom, horizontally_flipped, vertically_flipped, smooth_border): |
|
image_height, image_width, dummy_channel = np.array(input_image).shape |
|
|
|
if horizontally_flipped and vertically_flipped: |
|
mask_image = Image.new(mode = input_image.mode, size = (enlarge_left + image_width + enlarge_right, enlarge_top + image_height + enlarge_bottom), color = (255, 255, 255, 0)) |
|
black_mask = Image.new(mode = input_image.mode, size = (image_width - smooth_border, enlarge_top + image_height + enlarge_bottom), color = (127, 127, 127, 0)) |
|
mask_image.paste(black_mask, (enlarge_left + (smooth_border // 2), 0)) |
|
black_mask = Image.new(mode = input_image.mode, size = (enlarge_left + image_width + enlarge_right, image_height - smooth_border), color = (127, 127, 127, 0)) |
|
mask_image.paste(black_mask, (0, enlarge_top + (smooth_border // 2))) |
|
elif horizontally_flipped: |
|
mask_image = Image.new(mode = input_image.mode, size = (enlarge_left + image_width + enlarge_right, image_height), color = (255, 255, 255, 0)) |
|
black_mask = Image.new(mode = input_image.mode, size = (image_width - smooth_border, image_height), color = (127, 127, 127, 0)) |
|
mask_image.paste(black_mask, (enlarge_left + (smooth_border // 2), 0)) |
|
elif vertically_flipped: |
|
mask_image = Image.new(mode = input_image.mode, size = (image_width, enlarge_top + image_height + enlarge_bottom), color = (255, 255, 255, 0)) |
|
black_mask = Image.new(mode = input_image.mode, size = (image_width, image_height - smooth_border), color = (127, 127, 127, 0)) |
|
mask_image.paste(black_mask, (0, enlarge_top + (smooth_border // 2))) |
|
|
|
mask_image = blur(mask_image, 10) |
|
|
|
return mask_image |
|
|
|
def canva(input_image, enlarge_left, enlarge_right, enlarge_top, enlarge_bottom): |
|
image_height, image_width, dummy_channel = np.array(input_image).shape |
|
output_width = enlarge_left + image_width + enlarge_right |
|
output_height = enlarge_top + image_height + enlarge_bottom |
|
|
|
canva_image = Image.new(mode = input_image.mode, size = (image_width, image_height), color = "black") |
|
canva_image.paste(input_image, (0, 0)) |
|
canva_image = canva_image.resize((output_width, output_height), Image.LANCZOS) |
|
canva_image = blur(canva_image, 20) |
|
|
|
canva_image.paste(input_image, (enlarge_left, enlarge_top)) |
|
|
|
horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((image_width * 2, image_height), Image.LANCZOS) |
|
canva_image.paste(horizontally_mirrored_input_image, (enlarge_left - (image_width * 2), enlarge_top)) |
|
canva_image.paste(horizontally_mirrored_input_image, (enlarge_left + image_width, enlarge_top)) |
|
|
|
vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((image_width, image_height * 2), Image.LANCZOS) |
|
canva_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (image_height * 2))) |
|
canva_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + image_height)) |
|
|
|
returned_input_image = input_image.transpose(Image.ROTATE_180).resize((image_width * 2, image_height * 2), Image.LANCZOS) |
|
canva_image.paste(returned_input_image, (enlarge_left - (image_width * 2), enlarge_top - (image_height * 2))) |
|
canva_image.paste(returned_input_image, (enlarge_left - (image_width * 2), enlarge_top + image_height)) |
|
canva_image.paste(returned_input_image, (enlarge_left + image_width, enlarge_top - (image_height * 2))) |
|
canva_image.paste(returned_input_image, (enlarge_left + image_width, enlarge_top + image_height)) |
|
|
|
canva_image = blur(canva_image, 20) |
|
canva_image.paste(input_image, (enlarge_left, enlarge_top)) |
|
|
|
return canva_image |
|
|
|
def noise_color(color, noise): |
|
return color + random.randint(- noise, noise) |
|
|
|
def add_noise( |
|
input_image, |
|
canva_image, |
|
enlarge_left, |
|
enlarge_right, |
|
enlarge_top, |
|
enlarge_bottom |
|
): |
|
input_height, input_width, dummy_channel = np.array(input_image).shape |
|
canva_height, canva_width, dummy_channel_2 = np.array(canva_image).shape |
|
noise_image = Image.new(mode = input_image.mode, size = (canva_width, canva_height), color = "black") |
|
canva_pixels = canva_image.load() |
|
|
|
for x in range(canva_width): |
|
for y in range(canva_height): |
|
canva_pixel = canva_pixels[x, y] |
|
noise = min(max(enlarge_left - x, x - (enlarge_left + input_width), enlarge_top - y, y - (enlarge_top + input_height), 0), 255) |
|
noise_image.putpixel((x, y), (noise_color(canva_pixel[0], noise), noise_color(canva_pixel[1], noise), noise_color(canva_pixel[2], noise), 255)) |
|
|
|
canva_image.paste(noise_image, (0, 0)) |
|
|
|
return canva_image |
|
|
|
def resizing(output_width, output_height, limitation): |
|
resized_width = output_width |
|
resized_height = output_height |
|
|
|
if 1024 * 1024 < output_width * output_height: |
|
factor = ((1024 * 1024) / (output_width * output_height))**0.5 |
|
resized_width = math.floor(output_width * factor) |
|
resized_height = math.floor(output_height * factor) |
|
|
|
limitation = " Due to technical limitation, the image have been downscaled and then upscaled."; |
|
|
|
|
|
resized_width = resized_width - (resized_width % 8) |
|
resized_height = resized_height - (resized_height % 8) |
|
|
|
return resized_width, resized_height, limitation |
|
|
|
def join_edge( |
|
input_image, |
|
enlarge_left, |
|
enlarge_right, |
|
enlarge_top, |
|
enlarge_bottom, |
|
horizontally_flipped, |
|
vertically_flipped, |
|
limitation, |
|
prompt, |
|
negative_prompt, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
denoising_steps, |
|
seed, |
|
debug_mode, |
|
progress |
|
): |
|
original_height, original_width, dummy_channel = np.array(input_image).shape |
|
output_width = (0 if vertically_flipped else enlarge_left) + original_width + (0 if vertically_flipped else enlarge_right) |
|
output_height = (0 if horizontally_flipped else enlarge_top) + original_height + (0 if horizontally_flipped else enlarge_bottom) |
|
|
|
current_image = canva( |
|
input_image, |
|
(0 if vertically_flipped else enlarge_left), |
|
(0 if vertically_flipped else enlarge_right), |
|
(0 if horizontally_flipped else enlarge_top), |
|
(0 if horizontally_flipped else enlarge_bottom) |
|
) |
|
no_noise_image = current_image |
|
|
|
current_image = add_noise( |
|
input_image, |
|
current_image, |
|
(0 if vertically_flipped else enlarge_left), |
|
(0 if vertically_flipped else enlarge_right), |
|
(0 if horizontally_flipped else enlarge_top), |
|
(0 if horizontally_flipped else enlarge_bottom) |
|
) |
|
current_image = flip(current_image, horizontally_flipped, vertically_flipped) |
|
|
|
mask_image = mask(input_image, enlarge_left, enlarge_right, enlarge_top, enlarge_bottom, horizontally_flipped, vertically_flipped, smooth_border) |
|
mask_image = flip(mask_image, horizontally_flipped, vertically_flipped) |
|
|
|
resized_width, resized_height, limitation = resizing(output_width, output_height, limitation) |
|
|
|
if horizontally_flipped and vertically_flipped: |
|
progress(.85, desc = "Processing (3/3)...") |
|
elif horizontally_flipped: |
|
progress(.16, desc = "Processing (1/3)...") |
|
elif vertically_flipped: |
|
progress(.51, desc = "Processing (2/3)...") |
|
|
|
|
|
output_image = pipe( |
|
seeds = [seed], |
|
width = resized_width, |
|
height = resized_height, |
|
prompt = prompt, |
|
negative_prompt = negative_prompt, |
|
image = current_image, |
|
mask_image = mask_image, |
|
num_inference_steps = num_inference_steps, |
|
guidance_scale = guidance_scale, |
|
|
|
denoising_steps = denoising_steps, |
|
show_progress_bar = False |
|
).images[0] |
|
|
|
output_image = output_image.resize((output_width, output_height), Image.LANCZOS) |
|
output_image = flip(output_image, horizontally_flipped, vertically_flipped) |
|
|
|
return output_image, limitation, input_image, no_noise_image, current_image, mask_image |
|
|
|
def additional_information(processed_image, repeating_horizontally, repeating_vertically): |
|
try: |
|
output_height, output_width, dummy_channel = np.array(processed_image).shape |
|
horizontal_loops = 2 if repeating_horizontally else 1 |
|
vertical_loops = 2 if repeating_vertically else 1 |
|
|
|
demonstration = Image.new(mode = processed_image.mode, size = (output_width * horizontal_loops, output_height * vertical_loops), color = "black") |
|
for x in range(horizontal_loops): |
|
for y in range(vertical_loops): |
|
demonstration.paste(processed_image, (output_width * x, output_height * y)) |
|
except: |
|
output_height = 0 |
|
output_width = 0 |
|
demonstration = None |
|
|
|
return output_height, output_width, demonstration |
|
|
|
def check( |
|
processed_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
repeating_horizontally, |
|
repeating_vertically, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
denoising_steps, |
|
is_randomize_seed, |
|
seed, |
|
debug_mode, |
|
progress = gr.Progress() |
|
): |
|
if processed_image is None: |
|
raise gr.Error("Please provide an image.") |
|
|
|
if prompt is None or prompt == "": |
|
raise gr.Error("Please provide a prompt input.") |
|
|
|
if repeating_horizontally == False and repeating_vertically == False: |
|
raise gr.Error("The image should loop at least in one direction.") |
|
|
|
if (not (enlarge_top is None)) and enlarge_top < 0: |
|
raise gr.Error("Please only provide positive margins.") |
|
|
|
if (not (enlarge_right is None)) and enlarge_right < 0: |
|
raise gr.Error("Please only provide positive margins.") |
|
|
|
if (not (enlarge_bottom is None)) and enlarge_bottom < 0: |
|
raise gr.Error("Please only provide positive margins.") |
|
|
|
if (not (enlarge_left is None)) and enlarge_left < 0: |
|
raise gr.Error("Please only provide positive margins.") |
|
|
|
if (smooth_border is None or smooth_border == 0) and (enlarge_top is None or enlarge_top == 0) and (enlarge_right is None or enlarge_right == 0) and (enlarge_bottom is None or enlarge_bottom == 0) and (enlarge_left is None or enlarge_left == 0): |
|
raise gr.Error("At least one border must be enlarged or smoothed.") |
|
|
|
@spaces.GPU(duration=420) |
|
def image_to_tile( |
|
processed_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
repeating_horizontally, |
|
repeating_vertically, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
denoising_steps, |
|
is_randomize_seed, |
|
seed, |
|
debug_mode, |
|
progress = gr.Progress() |
|
): |
|
start = time.time() |
|
progress(0, desc = "Preparing data...") |
|
limitation = ""; |
|
|
|
if negative_prompt is None: |
|
negative_prompt = "" |
|
|
|
if smooth_border is None: |
|
smooth_border = 64 |
|
|
|
if guidance_scale is None: |
|
guidance_scale = 7 |
|
|
|
if image_guidance_scale is None: |
|
image_guidance_scale = 1.5 |
|
|
|
if enlarge_top is None or enlarge_top == "": |
|
enlarge_top = 0 |
|
|
|
if enlarge_right is None or enlarge_right == "": |
|
enlarge_right = 0 |
|
|
|
if enlarge_bottom is None or enlarge_bottom == "": |
|
enlarge_bottom = 0 |
|
|
|
if enlarge_left is None or enlarge_left == "": |
|
enlarge_left = 0 |
|
|
|
if denoising_steps is None: |
|
denoising_steps = 1000 |
|
|
|
if seed is None: |
|
seed = random.randint(0, max_64_bit_int) |
|
|
|
random.seed(seed) |
|
torch.manual_seed(seed) |
|
|
|
original_image = processed_image |
|
horizontally_mirrored_image = None |
|
horizontally_mirrored_mask = None |
|
vertically_mirrored_image = None |
|
vertically_mirrored_mask = None |
|
last_image = None |
|
last_mask = None |
|
|
|
if repeating_horizontally: |
|
processed_image, limitation, start_image, no_noise_image, horizontally_mirrored_image, horizontally_mirrored_mask = join_edge( |
|
processed_image, |
|
enlarge_left, |
|
enlarge_right, |
|
enlarge_top, |
|
enlarge_bottom, |
|
True, |
|
False, |
|
limitation, |
|
prompt, |
|
negative_prompt, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
denoising_steps, |
|
seed, |
|
debug_mode, |
|
progress |
|
) |
|
|
|
if repeating_vertically: |
|
processed_image, limitation, start_image, no_noise_image, vertically_mirrored_image, vertically_mirrored_mask = join_edge( |
|
processed_image, |
|
enlarge_left, |
|
enlarge_right, |
|
enlarge_top, |
|
enlarge_bottom, |
|
False, |
|
True, |
|
limitation, |
|
prompt, |
|
negative_prompt, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
denoising_steps, |
|
seed, |
|
debug_mode, |
|
progress |
|
) |
|
|
|
if repeating_horizontally and repeating_vertically: |
|
processed_image, limitation, start_image, no_noise_image, last_image, last_mask = join_edge( |
|
processed_image, |
|
enlarge_left, |
|
enlarge_right, |
|
enlarge_top, |
|
enlarge_bottom, |
|
True, |
|
True, |
|
limitation, |
|
prompt, |
|
negative_prompt, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
denoising_steps, |
|
seed, |
|
debug_mode, |
|
progress |
|
) |
|
progress(.99, desc = "Finishing...") |
|
|
|
output_height, output_width, demonstration = additional_information(processed_image, repeating_horizontally, repeating_vertically) |
|
|
|
end = time.time() |
|
secondes = int(end - start) |
|
minutes = math.floor(secondes / 60) |
|
secondes = secondes - (minutes * 60) |
|
hours = math.floor(minutes / 60) |
|
minutes = minutes - (hours * 60) |
|
|
|
return [ |
|
processed_image, |
|
("Start again to get a different result. " if is_randomize_seed else "") + "The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation, |
|
demonstration, |
|
original_image, |
|
horizontally_mirrored_image, |
|
horizontally_mirrored_mask, |
|
vertically_mirrored_image, |
|
vertically_mirrored_mask, |
|
last_image, |
|
last_mask |
|
] |
|
|
|
with gr.Blocks() as interface: |
|
gr.HTML( |
|
""" |
|
<h1 style="text-align: center;">Make my image tile</h1> |
|
<p style="text-align: center;">Modify the edges of your image to make your image loop horizontally and vertically seamlessly, up to 1 million pixels, freely, without account, without watermark, which can be downloaded</p> |
|
<br/> |
|
<br/> |
|
β¨ Powered by <i>SDXL 1.0</i> artificial intellingence |
|
<br/> |
|
<ul> |
|
<li>If you need to change the <b>view angle</b> of your image, I recommend you to use <i>Zero123</i>,</li> |
|
<li>If you need to enlarge the <b>viewpoint</b> of your image, I recommend you to use <i>Uncrop</i>,</li> |
|
<li>If you need to <b>upscale</b> your image, I recommend you to use <i><a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR">SUPIR</a></i>,</li> |
|
<li>If you need to <b>slightly change</b> your image, I recommend you to use <i>Image-to-Image SDXL</i>,</li> |
|
<li>If you need to change <b>one detail</b> on your image, I recommend you to use <i>Inpaint SDXL</i>,</li> |
|
<li>To modify <b>anything else</b> on your image, I recommend to use <i>Instruct Pix2Pix</i>.</li> |
|
</ul> |
|
<br/> |
|
""" + ("πββοΈ Estimated time: few minutes." if torch.cuda.is_available() else "π Slow process... ~1 hour.") + """ |
|
Your computer must <u>not</u> enter into standby mode.<br/>You can duplicate this space on a free account, it's designed to work on CPU, GPU and ZeroGPU.<br/> |
|
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Make-my-image-tiling?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a> |
|
<br/> |
|
βοΈ You can use, modify and share the generated images but not for commercial uses. |
|
""" |
|
) |
|
|
|
processed_image = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil") |
|
repeating_horizontally = gr.Checkbox(label = "Repeating horizontally", value = True, info = "Alter the left and right edges of the image") |
|
repeating_vertically = gr.Checkbox(label = "Repeating vertically", value = True, info = "Alter the top and bottom edges of the image") |
|
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image", lines = 2) |
|
with gr.Accordion("Advanced options", open = False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
dummy_1 = gr.Label(visible = False) |
|
with gr.Column(): |
|
enlarge_top = gr.Number(minimum = 0, value = 0, precision = 0, label = "Enlarge on top β¬οΈ", info = "in pixels") |
|
with gr.Column(): |
|
dummy_2 = gr.Label(visible = False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
enlarge_left = gr.Number(minimum = 0, value = 0, precision = 0, label = "Enlarge on left β¬
οΈ", info = "in pixels") |
|
with gr.Column(): |
|
smooth_border = gr.Slider(minimum = 0, maximum = 1024, value = 128, step = 2, label = "Smooth border", info = "in pixels; lower=preserve original, higher=seamless") |
|
with gr.Column(): |
|
enlarge_right = gr.Number(minimum = 0, value = 0, precision = 0, label = "Enlarge on right β‘οΈ", info = "in pixels") |
|
with gr.Row(): |
|
with gr.Column(): |
|
dummy_3 = gr.Label(visible = False) |
|
with gr.Column(): |
|
enlarge_bottom = gr.Number(minimum = 0, value = 0, precision = 0, label = "Enlarge on bottom β¬οΈ", info = "in pixels") |
|
with gr.Column(): |
|
dummy_4 = gr.Label(visible = False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark') |
|
num_inference_steps = gr.Slider(minimum = 10, maximum = 25, value = 20, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality") |
|
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Guidance Scale", info = "lower=image quality, higher=follow the prompt") |
|
image_guidance_scale = gr.Slider(minimum = 1, value = 1.5, step = 0.1, label = "Image Guidance Scale (disabled)", info = "lower=image quality, higher=follow the image") |
|
denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result") |
|
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different") |
|
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed") |
|
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results") |
|
|
|
submit = gr.Button("π Generate my tile", variant = "primary") |
|
|
|
tiled_image_component = gr.Image(label = "Tiled image") |
|
information = gr.HTML() |
|
demonstration_component = gr.Image(label = "Demonstration") |
|
original_image_component = gr.Image(label = "Original image", visible = False) |
|
horizontally_mirrored_image_component = gr.Image(label = "Horizontally mirrored image", visible = False) |
|
horizontally_mirrored_mask_component = gr.Image(label = "Horizontal mask", visible = False) |
|
vertically_mirrored_image_component = gr.Image(label = "Vertically mirrored image", visible = False) |
|
vertically_mirrored_mask_component = gr.Image(label = "Vertical mask", visible = False) |
|
last_image_component = gr.Image(label = "Last image", visible = False) |
|
last_mask_component = gr.Image(label = "Last mask", visible = False) |
|
|
|
submit.click(fn = update_seed, inputs = [ |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
seed |
|
], queue = False, show_progress = False).then(fn = toggle_debug, inputs = [ |
|
debug_mode, |
|
repeating_horizontally, |
|
repeating_vertically |
|
], outputs = [ |
|
original_image_component, |
|
horizontally_mirrored_image_component, |
|
horizontally_mirrored_mask_component, |
|
vertically_mirrored_image_component, |
|
vertically_mirrored_mask_component, |
|
last_image_component, |
|
last_mask_component |
|
], queue = False, show_progress = False).then(fn = check, inputs = [ |
|
processed_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
repeating_horizontally, |
|
repeating_vertically, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
denoising_steps, |
|
randomize_seed, |
|
seed, |
|
debug_mode |
|
], outputs = [], queue = False, show_progress = False).success(image_to_tile, inputs = [ |
|
processed_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
repeating_horizontally, |
|
repeating_vertically, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
denoising_steps, |
|
randomize_seed, |
|
seed, |
|
debug_mode |
|
], outputs = [ |
|
tiled_image_component, |
|
information, |
|
demonstration_component, |
|
original_image_component, |
|
horizontally_mirrored_image_component, |
|
horizontally_mirrored_mask_component, |
|
vertically_mirrored_image_component, |
|
vertically_mirrored_mask_component, |
|
last_image_component, |
|
last_mask_component |
|
], scroll_to_output = True) |
|
|
|
gr.Examples( |
|
run_on_click = True, |
|
fn = image_to_tile, |
|
inputs = [ |
|
processed_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
repeating_horizontally, |
|
repeating_vertically, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
denoising_steps, |
|
randomize_seed, |
|
seed, |
|
debug_mode |
|
], |
|
outputs = [ |
|
tiled_image_component, |
|
information, |
|
demonstration_component, |
|
original_image_component, |
|
horizontally_mirrored_image_component, |
|
horizontally_mirrored_mask_component, |
|
vertically_mirrored_image_component, |
|
vertically_mirrored_mask_component, |
|
last_image_component, |
|
last_mask_component |
|
], |
|
examples = [ |
|
[ |
|
"Example1.png", |
|
0, |
|
0, |
|
0, |
|
0, |
|
"Stone wall, front view, homogene light, ultrarealistic, realistic, photorealistic, photo, 8k", |
|
"Border, frame, painting, drawing, cartoon, 3d, scribbling, smear, noise, blur, watermark", |
|
True, |
|
True, |
|
256, |
|
20, |
|
7, |
|
1.5, |
|
1000, |
|
False, |
|
42, |
|
False |
|
], |
|
], |
|
cache_examples = False, |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
## How to prompt your image |
|
|
|
To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality: |
|
``` |
|
A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can use round brackets to increase the importance of a part: |
|
``` |
|
A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can use several levels of round brackets to even more increase the importance of a part: |
|
``` |
|
A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can use number instead of several round brackets: |
|
``` |
|
A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can do the same thing with square brackets to decrease the importance of a part: |
|
``` |
|
A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
To easily read your negative prompt, organize it the same way as your prompt (not important for the AI): |
|
``` |
|
man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh |
|
``` |
|
""" |
|
) |
|
|
|
interface.queue().launch() |