assignment / app.py
Fanny1366's picture
Create app.py
5866ba2 verified
raw
history blame
1.56 kB
import streamlit as st
from transformers import pipeline
from gtts import gTTS
import os
# Function: Image to Text
def img2text(url):
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
text = image_to_text_model(url)[0]["generated_text"]
return text
# Function: Text to Story (Placeholder)
def text2story(text):
story_text = text # Placeholder for now
return story_text
# Function: Text to Audio
def text2audio(story_text):
# Convert text to audio using gTTS
tts = gTTS(story_text, lang="en")
audio_file = "story_audio.wav"
tts.save(audio_file)
return audio_file
# Streamlit App
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
st.header("Turn Your Image to Audio Story")
uploaded_file = st.file_uploader("Select an Image...")
if uploaded_file is not None:
print(uploaded_file)
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
# Stage 1: Image to Text
st.text('Processing img2text...')
scenario = img2text(uploaded_file.name)
st.write(scenario)
# Stage 2: Text to Story
st.text('Generating a story...')
story = text2story(scenario)
st.write(story)
# Stage 3: Story to Audio
st.text('Generating audio data...')
audio_file = text2audio(story)
# Play button
if st.button("Play Audio"):
st.audio(audio_file, format="audio/wav")