Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from gtts import gTTS | |
import os | |
# Function: Image to Text | |
def img2text(url): | |
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
text = image_to_text_model(url)[0]["generated_text"] | |
return text | |
# Function: Text to Story (Placeholder) | |
def text2story(text): | |
story_text = text # Placeholder for now | |
return story_text | |
# Function: Text to Audio | |
def text2audio(story_text): | |
# Convert text to audio using gTTS | |
tts = gTTS(story_text, lang="en") | |
audio_file = "story_audio.wav" | |
tts.save(audio_file) | |
return audio_file | |
# Streamlit App | |
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") | |
st.header("Turn Your Image to Audio Story") | |
uploaded_file = st.file_uploader("Select an Image...") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) | |
# Stage 1: Image to Text | |
st.text('Processing img2text...') | |
scenario = img2text(uploaded_file.name) | |
st.write(scenario) | |
# Stage 2: Text to Story | |
st.text('Generating a story...') | |
story = text2story(scenario) | |
st.write(story) | |
# Stage 3: Story to Audio | |
st.text('Generating audio data...') | |
audio_file = text2audio(story) | |
# Play button | |
if st.button("Play Audio"): | |
st.audio(audio_file, format="audio/wav") |