Spaces:
Running
Running
# import part | |
import streamlit as st | |
from transformers import pipeline | |
from gtts import gTTS | |
import io | |
# function part | |
# img2text | |
def img2text(url): | |
image_to_text_model = pipeline("image-to-text", | |
model="Salesforce/blip-image-captioning-base") | |
text = image_to_text_model(url)[0]["generated_text"] | |
return text | |
# text2story | |
def text2story(text): | |
story_pipeline = pipeline("text-generation", model="agentica-org/DeepScaleR-1.5B-Preview") | |
result = story_pipeline(text, max_length=200, num_return_sequences=1) | |
story_text = result[0]['generated_text'] | |
return story_text | |
# text2audio | |
def text2audio(story_text): | |
tts = gTTS(text=story_text, lang='en') | |
audio_file = io.BytesIO() | |
tts.write_to_fp(audio_file) | |
audio_file.seek(0) | |
return {'audio': audio_file, 'sampling_rate': 16000} | |
# main part | |
st.set_page_config(page_title="Your Image to Audio Story", | |
page_icon="🦜") | |
st.header("Turn Your Image to Audio Story") | |
uploaded_file = st.file_uploader("Select an Image...") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded Image", | |
use_column_width=True) | |
# Stage 1: Image to Text | |
st.text('Processing img2text...') | |
scenario = img2text(uploaded_file.name) | |
st.write(scenario) | |
# Stage 2: Text to Story | |
st.text('Generating a story...') | |
story = text2story(scenario) | |
st.write(story) | |
# Stage 3: Story to Audio data | |
st.text('Generating audio data...') | |
audio_data = text2audio(story) | |
# Play button | |
if st.button("Play Audio"): | |
st.audio(audio_data['audio'], | |
format="audio/wav", | |
start_time=0, | |
sample_rate=audio_data['sampling_rate']) |