# import part import streamlit as st from transformers import pipeline from gtts import gTTS import io # function part # img2text def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text_model(url)[0]["generated_text"] return text # text2story def text2story(text): story_pipeline = pipeline("text-generation", model="agentica-org/DeepScaleR-1.5B-Preview") result = story_pipeline(text, max_length=200, num_return_sequences=1) story_text = result[0]['generated_text'] return story_text # text2audio def text2audio(story_text): tts = gTTS(text=story_text, lang='en') audio_file = io.BytesIO() tts.write_to_fp(audio_file) audio_file.seek(0) return {'audio': audio_file, 'sampling_rate': 16000} # main part st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") st.header("Turn Your Image to Audio Story") uploaded_file = st.file_uploader("Select an Image...") if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) # Stage 1: Image to Text st.text('Processing img2text...') scenario = img2text(uploaded_file.name) st.write(scenario) # Stage 2: Text to Story st.text('Generating a story...') story = text2story(scenario) st.write(story) # Stage 3: Story to Audio data st.text('Generating audio data...') audio_data = text2audio(story) # Play button if st.button("Play Audio"): st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate=audio_data['sampling_rate'])