Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,29 +4,46 @@ import random
|
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
from diffusers import DiffusionPipeline
|
|
|
|
| 7 |
|
|
|
|
| 8 |
dtype = torch.bfloat16
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
MAX_IMAGE_SIZE = 2048
|
| 15 |
|
| 16 |
@spaces.GPU()
|
| 17 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
| 18 |
if randomize_seed:
|
| 19 |
seed = random.randint(0, MAX_SEED)
|
| 20 |
generator = torch.Generator().manual_seed(seed)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
examples = [
|
| 32 |
"a tiny astronaut hatching from an egg on the moon",
|
|
@@ -61,7 +78,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 61 |
|
| 62 |
run_button = gr.Button("Run", scale=0)
|
| 63 |
|
| 64 |
-
|
| 65 |
|
| 66 |
with gr.Accordion("Advanced Settings", open=False):
|
| 67 |
|
|
@@ -95,7 +112,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 95 |
|
| 96 |
with gr.Row():
|
| 97 |
|
| 98 |
-
|
| 99 |
num_inference_steps = gr.Slider(
|
| 100 |
label="Number of inference steps",
|
| 101 |
minimum=1,
|
|
@@ -103,20 +119,28 @@ with gr.Blocks(css=css) as demo:
|
|
| 103 |
step=1,
|
| 104 |
value=4,
|
| 105 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
gr.Examples(
|
| 108 |
examples = examples,
|
| 109 |
fn = infer,
|
| 110 |
inputs = [prompt],
|
| 111 |
-
outputs = [
|
| 112 |
cache_examples="lazy"
|
| 113 |
)
|
| 114 |
|
| 115 |
gr.on(
|
| 116 |
triggers=[run_button.click, prompt.submit],
|
| 117 |
fn = infer,
|
| 118 |
-
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
|
| 119 |
-
outputs = [
|
| 120 |
)
|
| 121 |
|
| 122 |
-
demo.launch()
|
|
|
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
+
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
| 8 |
|
| 9 |
+
# Configuración para usar bfloat16 y CUDA si está disponible
|
| 10 |
dtype = torch.bfloat16
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
+
# Inicialización del modelo en la RAM
|
| 14 |
+
with init_empty_weights():
|
| 15 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
| 16 |
+
|
| 17 |
+
# Cargar el modelo en la RAM y despachar los pesos a la GPU
|
| 18 |
+
pipe = load_checkpoint_and_dispatch(
|
| 19 |
+
pipe,
|
| 20 |
+
"black-forest-labs/FLUX.1-schnell",
|
| 21 |
+
device_map="auto", # Automatiza el uso de RAM y GPU
|
| 22 |
+
offload_folder=None, # Evita que se almacenen los pesos temporalmente en el disco
|
| 23 |
+
).to(device)
|
| 24 |
|
| 25 |
MAX_SEED = np.iinfo(np.int32).max
|
| 26 |
MAX_IMAGE_SIZE = 2048
|
| 27 |
|
| 28 |
@spaces.GPU()
|
| 29 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=1, progress=gr.Progress(track_tqdm=True)):
|
| 30 |
if randomize_seed:
|
| 31 |
seed = random.randint(0, MAX_SEED)
|
| 32 |
generator = torch.Generator().manual_seed(seed)
|
| 33 |
+
|
| 34 |
+
images = []
|
| 35 |
+
for _ in range(num_images):
|
| 36 |
+
image = pipe(
|
| 37 |
+
prompt = prompt,
|
| 38 |
+
width = width,
|
| 39 |
+
height = height,
|
| 40 |
+
num_inference_steps = num_inference_steps,
|
| 41 |
+
generator = generator,
|
| 42 |
+
guidance_scale=0.0
|
| 43 |
+
).images[0]
|
| 44 |
+
images.append(image)
|
| 45 |
+
|
| 46 |
+
return images, seed
|
| 47 |
|
| 48 |
examples = [
|
| 49 |
"a tiny astronaut hatching from an egg on the moon",
|
|
|
|
| 78 |
|
| 79 |
run_button = gr.Button("Run", scale=0)
|
| 80 |
|
| 81 |
+
results = gr.Gallery(label="Results", show_label=False, elem_id="image-gallery")
|
| 82 |
|
| 83 |
with gr.Accordion("Advanced Settings", open=False):
|
| 84 |
|
|
|
|
| 112 |
|
| 113 |
with gr.Row():
|
| 114 |
|
|
|
|
| 115 |
num_inference_steps = gr.Slider(
|
| 116 |
label="Number of inference steps",
|
| 117 |
minimum=1,
|
|
|
|
| 119 |
step=1,
|
| 120 |
value=4,
|
| 121 |
)
|
| 122 |
+
|
| 123 |
+
num_images = gr.Slider(
|
| 124 |
+
label="Number of images",
|
| 125 |
+
minimum=1,
|
| 126 |
+
maximum=300,
|
| 127 |
+
step=1,
|
| 128 |
+
value=1,
|
| 129 |
+
)
|
| 130 |
|
| 131 |
gr.Examples(
|
| 132 |
examples = examples,
|
| 133 |
fn = infer,
|
| 134 |
inputs = [prompt],
|
| 135 |
+
outputs = [results, seed],
|
| 136 |
cache_examples="lazy"
|
| 137 |
)
|
| 138 |
|
| 139 |
gr.on(
|
| 140 |
triggers=[run_button.click, prompt.submit],
|
| 141 |
fn = infer,
|
| 142 |
+
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps, num_images],
|
| 143 |
+
outputs = [results, seed]
|
| 144 |
)
|
| 145 |
|
| 146 |
+
demo.launch()
|