Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -4,12 +4,12 @@ import redis 
     | 
|
| 4 | 
         
             
            import torch
         
     | 
| 5 | 
         
             
            import scipy
         
     | 
| 6 | 
         
             
            from transformers import (
         
     | 
| 7 | 
         
            -
                pipeline, AutoTokenizer, AutoModelForCausalLM, AutoProcessor, 
     | 
| 8 | 
         
            -
                MusicgenForConditionalGeneration, WhisperProcessor, WhisperForConditionalGeneration, 
     | 
| 9 | 
         
             
                MarianMTModel, MarianTokenizer, BartTokenizer, BartForConditionalGeneration
         
     | 
| 10 | 
         
             
            )
         
     | 
| 11 | 
         
             
            from diffusers import (
         
     | 
| 12 | 
         
            -
                FluxPipeline, StableDiffusionPipeline, DPMSolverMultistepScheduler, 
     | 
| 13 | 
         
             
                StableDiffusionImg2ImgPipeline, DiffusionPipeline
         
     | 
| 14 | 
         
             
            )
         
     | 
| 15 | 
         
             
            from diffusers.utils import export_to_video
         
     | 
| 
         @@ -22,16 +22,18 @@ import multiprocessing 
     | 
|
| 22 | 
         
             
            load_dotenv()
         
     | 
| 23 | 
         | 
| 24 | 
         
             
            redis_client = redis.Redis(
         
     | 
| 25 | 
         
            -
                host=os.getenv('REDIS_HOST'), 
     | 
| 26 | 
         
            -
                port=os.getenv('REDIS_PORT'), 
     | 
| 27 | 
         
             
                password=os.getenv("REDIS_PASSWORD")
         
     | 
| 28 | 
         
             
            )
         
     | 
| 29 | 
         | 
| 30 | 
         
             
            huggingface_token = os.getenv('HF_TOKEN')
         
     | 
| 31 | 
         | 
| 
         | 
|
| 32 | 
         
             
            def generate_unique_id():
         
     | 
| 33 | 
         
             
                return str(uuid.uuid4())
         
     | 
| 34 | 
         | 
| 
         | 
|
| 35 | 
         
             
            def store_special_tokens(tokenizer, model_name):
         
     | 
| 36 | 
         
             
                special_tokens = {
         
     | 
| 37 | 
         
             
                    'pad_token': tokenizer.pad_token,
         
     | 
| 
         @@ -45,6 +47,7 @@ def store_special_tokens(tokenizer, model_name): 
     | 
|
| 45 | 
         
             
                }
         
     | 
| 46 | 
         
             
                redis_client.hmset(f"tokenizer_special_tokens:{model_name}", special_tokens)
         
     | 
| 47 | 
         | 
| 
         | 
|
| 48 | 
         
             
            def load_special_tokens(tokenizer, model_name):
         
     | 
| 49 | 
         
             
                special_tokens = redis_client.hgetall(f"tokenizer_special_tokens:{model_name}")
         
     | 
| 50 | 
         
             
                if special_tokens:
         
     | 
| 
         @@ -57,6 +60,7 @@ def load_special_tokens(tokenizer, model_name): 
     | 
|
| 57 | 
         
             
                    tokenizer.bos_token = special_tokens.get('bos_token', '').decode("utf-8")
         
     | 
| 58 | 
         
             
                    tokenizer.bos_token_id = int(special_tokens.get('bos_token_id', -1))
         
     | 
| 59 | 
         | 
| 
         | 
|
| 60 | 
         
             
            def train_and_store_transformers_model(model_name, data):
         
     | 
| 61 | 
         
             
                tokenizer = AutoTokenizer.from_pretrained(model_name)
         
     | 
| 62 | 
         
             
                model = AutoModelForCausalLM.from_pretrained(model_name)
         
     | 
| 
         @@ -69,6 +73,7 @@ def train_and_store_transformers_model(model_name, data): 
     | 
|
| 69 | 
         
             
                tokenizer_data = tokenizer.save_pretrained("transformers_tokenizer")
         
     | 
| 70 | 
         
             
                redis_client.set(f"transformers_tokenizer:{model_name}", tokenizer_data)
         
     | 
| 71 | 
         | 
| 
         | 
|
| 72 | 
         
             
            def generate_transformers_response_from_redis(model_name, prompt):
         
     | 
| 73 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 74 | 
         
             
                model_data = redis_client.get(f"transformers_model:{model_name}:state_dict")
         
     | 
| 
         @@ -85,6 +90,7 @@ def generate_transformers_response_from_redis(model_name, prompt): 
     | 
|
| 85 | 
         
             
                redis_client.set(f"transformers_response:{unique_id}", response)
         
     | 
| 86 | 
         
             
                return response
         
     | 
| 87 | 
         | 
| 
         | 
|
| 88 | 
         
             
            def train_and_store_diffusers_model(model_name, data):
         
     | 
| 89 | 
         
             
                pipe = FluxPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16)
         
     | 
| 90 | 
         
             
                pipe.enable_model_cpu_offload()
         
     | 
| 
         @@ -94,6 +100,7 @@ def train_and_store_diffusers_model(model_name, data): 
     | 
|
| 94 | 
         
             
                    model_data = f.read()
         
     | 
| 95 | 
         
             
                redis_client.set(f"diffusers_model:{model_name}", model_data)
         
     | 
| 96 | 
         | 
| 
         | 
|
| 97 | 
         
             
            def generate_diffusers_image_from_redis(model_name, prompt):
         
     | 
| 98 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 99 | 
         
             
                model_data = redis_client.get(f"diffusers_model:{model_name}")
         
     | 
| 
         @@ -101,12 +108,14 @@ def generate_diffusers_image_from_redis(model_name, prompt): 
     | 
|
| 101 | 
         
             
                    f.write(model_data)
         
     | 
| 102 | 
         
             
                pipe = FluxPipeline.from_pretrained("diffusers_model", torch_dtype=torch.bfloat16)
         
     | 
| 103 | 
         
             
                pipe.enable_model_cpu_offload()
         
     | 
| 104 | 
         
            -
                image = pipe(prompt, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, 
     | 
| 
         | 
|
| 105 | 
         
             
                image_path = f"images/diffusers_{unique_id}.png"
         
     | 
| 106 | 
         
             
                image.save(image_path)
         
     | 
| 107 | 
         
             
                redis_client.set(f"diffusers_image:{unique_id}", image_path)
         
     | 
| 108 | 
         
             
                return image
         
     | 
| 109 | 
         | 
| 
         | 
|
| 110 | 
         
             
            def train_and_store_musicgen_model(model_name, data):
         
     | 
| 111 | 
         
             
                processor = AutoProcessor.from_pretrained(model_name)
         
     | 
| 112 | 
         
             
                model = MusicgenForConditionalGeneration.from_pretrained(model_name)
         
     | 
| 
         @@ -118,6 +127,7 @@ def train_and_store_musicgen_model(model_name, data): 
     | 
|
| 118 | 
         
             
                processor_data = processor.save_pretrained("musicgen_processor")
         
     | 
| 119 | 
         
             
                redis_client.set(f"musicgen_processor:{model_name}", processor_data)
         
     | 
| 120 | 
         | 
| 
         | 
|
| 121 | 
         
             
            def generate_musicgen_audio_from_redis(model_name, text_prompts):
         
     | 
| 122 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 123 | 
         
             
                model_data = redis_client.get(f"musicgen_model:{model_name}:state_dict")
         
     | 
| 
         @@ -134,6 +144,7 @@ def generate_musicgen_audio_from_redis(model_name, text_prompts): 
     | 
|
| 134 | 
         
             
                redis_client.set(f"musicgen_audio:{unique_id}", audio_path)
         
     | 
| 135 | 
         
             
                return audio_path
         
     | 
| 136 | 
         | 
| 
         | 
|
| 137 | 
         
             
            def train_and_store_stable_diffusion_model(model_name, data):
         
     | 
| 138 | 
         
             
                pipe = StableDiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
         
     | 
| 139 | 
         
             
                pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
         
     | 
| 
         @@ -144,6 +155,7 @@ def train_and_store_stable_diffusion_model(model_name, data): 
     | 
|
| 144 | 
         
             
                    model_data = f.read()
         
     | 
| 145 | 
         
             
                redis_client.set(f"stable_diffusion_model:{model_name}", model_data)
         
     | 
| 146 | 
         | 
| 
         | 
|
| 147 | 
         
             
            def generate_stable_diffusion_image_from_redis(model_name, prompt):
         
     | 
| 148 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 149 | 
         
             
                model_data = redis_client.get(f"stable_diffusion_model:{model_name}")
         
     | 
| 
         @@ -158,6 +170,7 @@ def generate_stable_diffusion_image_from_redis(model_name, prompt): 
     | 
|
| 158 | 
         
             
                redis_client.set(f"stable_diffusion_image:{unique_id}", image_path)
         
     | 
| 159 | 
         
             
                return image
         
     | 
| 160 | 
         | 
| 
         | 
|
| 161 | 
         
             
            def train_and_store_img2img_model(model_name, data):
         
     | 
| 162 | 
         
             
                pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
         
     | 
| 163 | 
         
             
                pipe = pipe.to("cuda")
         
     | 
| 
         @@ -167,6 +180,7 @@ def train_and_store_img2img_model(model_name, data): 
     | 
|
| 167 | 
         
             
                    model_data = f.read()
         
     | 
| 168 | 
         
             
                redis_client.set(f"img2img_model:{model_name}", model_data)
         
     | 
| 169 | 
         | 
| 
         | 
|
| 170 | 
         
             
            def generate_img2img_from_redis(model_name, init_image, prompt, strength=0.75):
         
     | 
| 171 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 172 | 
         
             
                model_data = redis_client.get(f"img2img_model:{model_name}")
         
     | 
| 
         @@ -181,6 +195,7 @@ def generate_img2img_from_redis(model_name, init_image, prompt, strength=0.75): 
     | 
|
| 181 | 
         
             
                redis_client.set(f"img2img_image:{unique_id}", image_path)
         
     | 
| 182 | 
         
             
                return image
         
     | 
| 183 | 
         | 
| 
         | 
|
| 184 | 
         
             
            def train_and_store_marianmt_model(model_name, data):
         
     | 
| 185 | 
         
             
                tokenizer = MarianTokenizer.from_pretrained(model_name)
         
     | 
| 186 | 
         
             
                model = MarianMTModel.from_pretrained(model_name)
         
     | 
| 
         @@ -192,6 +207,7 @@ def train_and_store_marianmt_model(model_name, data): 
     | 
|
| 192 | 
         
             
                tokenizer_data = tokenizer.save_pretrained("marianmt_tokenizer")
         
     | 
| 193 | 
         
             
                redis_client.set(f"marianmt_tokenizer:{model_name}", tokenizer_data)
         
     | 
| 194 | 
         | 
| 
         | 
|
| 195 | 
         
             
            def translate_text_from_redis(model_name, text, src_lang, tgt_lang):
         
     | 
| 196 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 197 | 
         
             
                model_data = redis_client.get(f"marianmt_model:{model_name}:state_dict")
         
     | 
| 
         @@ -207,6 +223,7 @@ def translate_text_from_redis(model_name, text, src_lang, tgt_lang): 
     | 
|
| 207 | 
         
             
                redis_client.set(f"marianmt_translation:{unique_id}", translation)
         
     | 
| 208 | 
         
             
                return translation
         
     | 
| 209 | 
         | 
| 
         | 
|
| 210 | 
         
             
            def train_and_store_bart_model(model_name, data):
         
     | 
| 211 | 
         
             
                tokenizer = BartTokenizer.from_pretrained(model_name)
         
     | 
| 212 | 
         
             
                model = BartForConditionalGeneration.from_pretrained(model_name)
         
     | 
| 
         @@ -218,6 +235,7 @@ def train_and_store_bart_model(model_name, data): 
     | 
|
| 218 | 
         
             
                tokenizer_data = tokenizer.save_pretrained("bart_tokenizer")
         
     | 
| 219 | 
         
             
                redis_client.set(f"bart_tokenizer:{model_name}", tokenizer_data)
         
     | 
| 220 | 
         | 
| 
         | 
|
| 221 | 
         
             
            def summarize_text_from_redis(model_name, text):
         
     | 
| 222 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 223 | 
         
             
                model_data = redis_client.get(f"bart_model:{model_name}:state_dict")
         
     | 
| 
         @@ -234,6 +252,7 @@ def summarize_text_from_redis(model_name, text): 
     | 
|
| 234 | 
         
             
                redis_client.set(f"bart_summary:{unique_id}", summary)
         
     | 
| 235 | 
         
             
                return summary
         
     | 
| 236 | 
         | 
| 
         | 
|
| 237 | 
         
             
            def auto_train_and_store(model_name, task, data):
         
     | 
| 238 | 
         
             
                if task == "text-generation":
         
     | 
| 239 | 
         
             
                    train_and_store_transformers_model(model_name, data)
         
     | 
| 
         @@ -250,6 +269,7 @@ def auto_train_and_store(model_name, task, data): 
     | 
|
| 250 | 
         
             
                elif task == "summarization":
         
     | 
| 251 | 
         
             
                    train_and_store_bart_model(model_name, data)
         
     | 
| 252 | 
         | 
| 
         | 
|
| 253 | 
         
             
            def transcribe_audio_from_redis(audio_file):
         
     | 
| 254 | 
         
             
                audio_file_path = "audio_file.wav"
         
     | 
| 255 | 
         
             
                with open(audio_file_path, "wb") as f:
         
     | 
| 
         @@ -263,6 +283,7 @@ def transcribe_audio_from_redis(audio_file): 
     | 
|
| 263 | 
         
             
                transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
         
     | 
| 264 | 
         
             
                return transcription[0]
         
     | 
| 265 | 
         | 
| 
         | 
|
| 266 | 
         
             
            def generate_image_from_redis(model_name, prompt, model_type):
         
     | 
| 267 | 
         
             
                if model_type == "diffusers":
         
     | 
| 268 | 
         
             
                    image = generate_diffusers_image_from_redis(model_name, prompt)
         
     | 
| 
         @@ -272,8 +293,10 @@ def generate_image_from_redis(model_name, prompt, model_type): 
     | 
|
| 272 | 
         
             
                    image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
         
     | 
| 273 | 
         
             
                return image
         
     | 
| 274 | 
         | 
| 
         | 
|
| 275 | 
         
             
            def generate_video_from_redis(prompt):
         
     | 
| 276 | 
         
            -
                pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, 
     | 
| 
         | 
|
| 277 | 
         
             
                pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
         
     | 
| 278 | 
         
             
                pipe.enable_model_cpu_offload()
         
     | 
| 279 | 
         
             
                video_frames = pipe(prompt, num_inference_steps=25).frames
         
     | 
| 
         @@ -282,6 +305,7 @@ def generate_video_from_redis(prompt): 
     | 
|
| 282 | 
         
             
                redis_client.set(f"video_{unique_id}", video_path)
         
     | 
| 283 | 
         
             
                return video_path
         
     | 
| 284 | 
         | 
| 
         | 
|
| 285 | 
         
             
            def generate_random_response(prompts, generator):
         
     | 
| 286 | 
         
             
                responses = []
         
     | 
| 287 | 
         
             
                for prompt in prompts:
         
     | 
| 
         @@ -289,16 +313,19 @@ def generate_random_response(prompts, generator): 
     | 
|
| 289 | 
         
             
                    responses.append(response)
         
     | 
| 290 | 
         
             
                return responses
         
     | 
| 291 | 
         | 
| 
         | 
|
| 292 | 
         
             
            def process_parallel(tasks):
         
     | 
| 293 | 
         
             
                with multiprocessing.Pool() as pool:
         
     | 
| 294 | 
         
             
                    results = pool.map(lambda task: task(), tasks)
         
     | 
| 295 | 
         
             
                return results
         
     | 
| 296 | 
         | 
| 
         | 
|
| 297 | 
         
             
            def generate_response_from_prompt(prompt, model_name="google/flan-t5-xl"):
         
     | 
| 298 | 
         
             
                generator = pipeline('text-generation', model=model_name, tokenizer=model_name)
         
     | 
| 299 | 
         
             
                responses = generate_random_response([prompt], generator)
         
     | 
| 300 | 
         
             
                return responses[0]
         
     | 
| 301 | 
         | 
| 
         | 
|
| 302 | 
         
             
            def generate_image_from_prompt(prompt, image_type, model_name="CompVis/stable-diffusion-v1-4"):
         
     | 
| 303 | 
         
             
                if image_type == "diffusers":
         
     | 
| 304 | 
         
             
                    image = generate_diffusers_image_from_redis(model_name, prompt)
         
     | 
| 
         @@ -308,65 +335,98 @@ def generate_image_from_prompt(prompt, image_type, model_name="CompVis/stable-di 
     | 
|
| 308 | 
         
             
                    image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
         
     | 
| 309 | 
         
             
                return image
         
     | 
| 310 | 
         | 
| 
         | 
|
| 311 | 
         
             
            def gradio_app():
         
     | 
| 312 | 
         
             
                with gr.Blocks() as app:
         
     | 
| 313 | 
         
            -
                    gr.Markdown( 
     | 
| 314 | 
         
            -
             
     | 
| 315 | 
         
            -
                         
     | 
| 316 | 
         
            -
                         
     | 
| 317 | 
         
            -
                         
     | 
| 318 | 
         
            -
                     
     | 
| 319 | 
         
            -
             
     | 
| 320 | 
         
            -
                    gr. 
     | 
| 321 | 
         
            -
             
     | 
| 322 | 
         
            -
             
     | 
| 323 | 
         
            -
             
     | 
| 324 | 
         
            -
             
     | 
| 325 | 
         
            -
             
     | 
| 326 | 
         
            -
             
     | 
| 327 | 
         
            -
             
     | 
| 328 | 
         
            -
             
     | 
| 329 | 
         
            -
                    gr. 
     | 
| 330 | 
         
            -
             
     | 
| 331 | 
         
            -
             
     | 
| 332 | 
         
            -
             
     | 
| 333 | 
         
            -
             
     | 
| 334 | 
         
            -
             
     | 
| 335 | 
         
            -
             
     | 
| 336 | 
         
            -
             
     | 
| 337 | 
         
            -
             
     | 
| 338 | 
         
            -
             
     | 
| 339 | 
         
            -
             
     | 
| 340 | 
         
            -
             
     | 
| 341 | 
         
            -
                         
     | 
| 342 | 
         
            -
             
     | 
| 343 | 
         
            -
             
     | 
| 344 | 
         
            -
                    gr. 
     | 
| 345 | 
         
            -
             
     | 
| 346 | 
         
            -
             
     | 
| 347 | 
         
            -
             
     | 
| 348 | 
         
            -
             
     | 
| 349 | 
         
            -
             
     | 
| 350 | 
         
            -
             
     | 
| 351 | 
         
            -
             
     | 
| 352 | 
         
            -
             
     | 
| 353 | 
         
            -
             
     | 
| 354 | 
         
            -
                         
     | 
| 355 | 
         
            -
             
     | 
| 356 | 
         
            -
             
     | 
| 357 | 
         
            -
             
     | 
| 358 | 
         
            -
             
     | 
| 359 | 
         
            -
             
     | 
| 360 | 
         
            -
             
     | 
| 361 | 
         
            -
             
     | 
| 362 | 
         
            -
             
     | 
| 363 | 
         
            -
             
     | 
| 364 | 
         
            -
             
     | 
| 365 | 
         
            -
             
     | 
| 366 | 
         
            -
                         
     | 
| 367 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 368 | 
         | 
| 369 | 
         
             
                app.launch()
         
     | 
| 370 | 
         | 
| 
         | 
|
| 371 | 
         
             
            if __name__ == "__main__":
         
     | 
| 372 | 
         
             
                gradio_app()
         
     | 
| 
         | 
|
| 4 | 
         
             
            import torch
         
     | 
| 5 | 
         
             
            import scipy
         
     | 
| 6 | 
         
             
            from transformers import (
         
     | 
| 7 | 
         
            +
                pipeline, AutoTokenizer, AutoModelForCausalLM, AutoProcessor,
         
     | 
| 8 | 
         
            +
                MusicgenForConditionalGeneration, WhisperProcessor, WhisperForConditionalGeneration,
         
     | 
| 9 | 
         
             
                MarianMTModel, MarianTokenizer, BartTokenizer, BartForConditionalGeneration
         
     | 
| 10 | 
         
             
            )
         
     | 
| 11 | 
         
             
            from diffusers import (
         
     | 
| 12 | 
         
            +
                FluxPipeline, StableDiffusionPipeline, DPMSolverMultistepScheduler,
         
     | 
| 13 | 
         
             
                StableDiffusionImg2ImgPipeline, DiffusionPipeline
         
     | 
| 14 | 
         
             
            )
         
     | 
| 15 | 
         
             
            from diffusers.utils import export_to_video
         
     | 
| 
         | 
|
| 22 | 
         
             
            load_dotenv()
         
     | 
| 23 | 
         | 
| 24 | 
         
             
            redis_client = redis.Redis(
         
     | 
| 25 | 
         
            +
                host=os.getenv('REDIS_HOST'),
         
     | 
| 26 | 
         
            +
                port=os.getenv('REDIS_PORT'),
         
     | 
| 27 | 
         
             
                password=os.getenv("REDIS_PASSWORD")
         
     | 
| 28 | 
         
             
            )
         
     | 
| 29 | 
         | 
| 30 | 
         
             
            huggingface_token = os.getenv('HF_TOKEN')
         
     | 
| 31 | 
         | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
             
            def generate_unique_id():
         
     | 
| 34 | 
         
             
                return str(uuid.uuid4())
         
     | 
| 35 | 
         | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
             
            def store_special_tokens(tokenizer, model_name):
         
     | 
| 38 | 
         
             
                special_tokens = {
         
     | 
| 39 | 
         
             
                    'pad_token': tokenizer.pad_token,
         
     | 
| 
         | 
|
| 47 | 
         
             
                }
         
     | 
| 48 | 
         
             
                redis_client.hmset(f"tokenizer_special_tokens:{model_name}", special_tokens)
         
     | 
| 49 | 
         | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
             
            def load_special_tokens(tokenizer, model_name):
         
     | 
| 52 | 
         
             
                special_tokens = redis_client.hgetall(f"tokenizer_special_tokens:{model_name}")
         
     | 
| 53 | 
         
             
                if special_tokens:
         
     | 
| 
         | 
|
| 60 | 
         
             
                    tokenizer.bos_token = special_tokens.get('bos_token', '').decode("utf-8")
         
     | 
| 61 | 
         
             
                    tokenizer.bos_token_id = int(special_tokens.get('bos_token_id', -1))
         
     | 
| 62 | 
         | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
             
            def train_and_store_transformers_model(model_name, data):
         
     | 
| 65 | 
         
             
                tokenizer = AutoTokenizer.from_pretrained(model_name)
         
     | 
| 66 | 
         
             
                model = AutoModelForCausalLM.from_pretrained(model_name)
         
     | 
| 
         | 
|
| 73 | 
         
             
                tokenizer_data = tokenizer.save_pretrained("transformers_tokenizer")
         
     | 
| 74 | 
         
             
                redis_client.set(f"transformers_tokenizer:{model_name}", tokenizer_data)
         
     | 
| 75 | 
         | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
             
            def generate_transformers_response_from_redis(model_name, prompt):
         
     | 
| 78 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 79 | 
         
             
                model_data = redis_client.get(f"transformers_model:{model_name}:state_dict")
         
     | 
| 
         | 
|
| 90 | 
         
             
                redis_client.set(f"transformers_response:{unique_id}", response)
         
     | 
| 91 | 
         
             
                return response
         
     | 
| 92 | 
         | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
             
            def train_and_store_diffusers_model(model_name, data):
         
     | 
| 95 | 
         
             
                pipe = FluxPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16)
         
     | 
| 96 | 
         
             
                pipe.enable_model_cpu_offload()
         
     | 
| 
         | 
|
| 100 | 
         
             
                    model_data = f.read()
         
     | 
| 101 | 
         
             
                redis_client.set(f"diffusers_model:{model_name}", model_data)
         
     | 
| 102 | 
         | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
             
            def generate_diffusers_image_from_redis(model_name, prompt):
         
     | 
| 105 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 106 | 
         
             
                model_data = redis_client.get(f"diffusers_model:{model_name}")
         
     | 
| 
         | 
|
| 108 | 
         
             
                    f.write(model_data)
         
     | 
| 109 | 
         
             
                pipe = FluxPipeline.from_pretrained("diffusers_model", torch_dtype=torch.bfloat16)
         
     | 
| 110 | 
         
             
                pipe.enable_model_cpu_offload()
         
     | 
| 111 | 
         
            +
                image = pipe(prompt, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256,
         
     | 
| 112 | 
         
            +
                              generator=torch.Generator("cpu").manual_seed(0)).images[0]
         
     | 
| 113 | 
         
             
                image_path = f"images/diffusers_{unique_id}.png"
         
     | 
| 114 | 
         
             
                image.save(image_path)
         
     | 
| 115 | 
         
             
                redis_client.set(f"diffusers_image:{unique_id}", image_path)
         
     | 
| 116 | 
         
             
                return image
         
     | 
| 117 | 
         | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
             
            def train_and_store_musicgen_model(model_name, data):
         
     | 
| 120 | 
         
             
                processor = AutoProcessor.from_pretrained(model_name)
         
     | 
| 121 | 
         
             
                model = MusicgenForConditionalGeneration.from_pretrained(model_name)
         
     | 
| 
         | 
|
| 127 | 
         
             
                processor_data = processor.save_pretrained("musicgen_processor")
         
     | 
| 128 | 
         
             
                redis_client.set(f"musicgen_processor:{model_name}", processor_data)
         
     | 
| 129 | 
         | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
             
            def generate_musicgen_audio_from_redis(model_name, text_prompts):
         
     | 
| 132 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 133 | 
         
             
                model_data = redis_client.get(f"musicgen_model:{model_name}:state_dict")
         
     | 
| 
         | 
|
| 144 | 
         
             
                redis_client.set(f"musicgen_audio:{unique_id}", audio_path)
         
     | 
| 145 | 
         
             
                return audio_path
         
     | 
| 146 | 
         | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
             
            def train_and_store_stable_diffusion_model(model_name, data):
         
     | 
| 149 | 
         
             
                pipe = StableDiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
         
     | 
| 150 | 
         
             
                pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
         
     | 
| 
         | 
|
| 155 | 
         
             
                    model_data = f.read()
         
     | 
| 156 | 
         
             
                redis_client.set(f"stable_diffusion_model:{model_name}", model_data)
         
     | 
| 157 | 
         | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
             
            def generate_stable_diffusion_image_from_redis(model_name, prompt):
         
     | 
| 160 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 161 | 
         
             
                model_data = redis_client.get(f"stable_diffusion_model:{model_name}")
         
     | 
| 
         | 
|
| 170 | 
         
             
                redis_client.set(f"stable_diffusion_image:{unique_id}", image_path)
         
     | 
| 171 | 
         
             
                return image
         
     | 
| 172 | 
         | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
             
            def train_and_store_img2img_model(model_name, data):
         
     | 
| 175 | 
         
             
                pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
         
     | 
| 176 | 
         
             
                pipe = pipe.to("cuda")
         
     | 
| 
         | 
|
| 180 | 
         
             
                    model_data = f.read()
         
     | 
| 181 | 
         
             
                redis_client.set(f"img2img_model:{model_name}", model_data)
         
     | 
| 182 | 
         | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
             
            def generate_img2img_from_redis(model_name, init_image, prompt, strength=0.75):
         
     | 
| 185 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 186 | 
         
             
                model_data = redis_client.get(f"img2img_model:{model_name}")
         
     | 
| 
         | 
|
| 195 | 
         
             
                redis_client.set(f"img2img_image:{unique_id}", image_path)
         
     | 
| 196 | 
         
             
                return image
         
     | 
| 197 | 
         | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
             
            def train_and_store_marianmt_model(model_name, data):
         
     | 
| 200 | 
         
             
                tokenizer = MarianTokenizer.from_pretrained(model_name)
         
     | 
| 201 | 
         
             
                model = MarianMTModel.from_pretrained(model_name)
         
     | 
| 
         | 
|
| 207 | 
         
             
                tokenizer_data = tokenizer.save_pretrained("marianmt_tokenizer")
         
     | 
| 208 | 
         
             
                redis_client.set(f"marianmt_tokenizer:{model_name}", tokenizer_data)
         
     | 
| 209 | 
         | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
             
            def translate_text_from_redis(model_name, text, src_lang, tgt_lang):
         
     | 
| 212 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 213 | 
         
             
                model_data = redis_client.get(f"marianmt_model:{model_name}:state_dict")
         
     | 
| 
         | 
|
| 223 | 
         
             
                redis_client.set(f"marianmt_translation:{unique_id}", translation)
         
     | 
| 224 | 
         
             
                return translation
         
     | 
| 225 | 
         | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
             
            def train_and_store_bart_model(model_name, data):
         
     | 
| 228 | 
         
             
                tokenizer = BartTokenizer.from_pretrained(model_name)
         
     | 
| 229 | 
         
             
                model = BartForConditionalGeneration.from_pretrained(model_name)
         
     | 
| 
         | 
|
| 235 | 
         
             
                tokenizer_data = tokenizer.save_pretrained("bart_tokenizer")
         
     | 
| 236 | 
         
             
                redis_client.set(f"bart_tokenizer:{model_name}", tokenizer_data)
         
     | 
| 237 | 
         | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
             
            def summarize_text_from_redis(model_name, text):
         
     | 
| 240 | 
         
             
                unique_id = generate_unique_id()
         
     | 
| 241 | 
         
             
                model_data = redis_client.get(f"bart_model:{model_name}:state_dict")
         
     | 
| 
         | 
|
| 252 | 
         
             
                redis_client.set(f"bart_summary:{unique_id}", summary)
         
     | 
| 253 | 
         
             
                return summary
         
     | 
| 254 | 
         | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
             
            def auto_train_and_store(model_name, task, data):
         
     | 
| 257 | 
         
             
                if task == "text-generation":
         
     | 
| 258 | 
         
             
                    train_and_store_transformers_model(model_name, data)
         
     | 
| 
         | 
|
| 269 | 
         
             
                elif task == "summarization":
         
     | 
| 270 | 
         
             
                    train_and_store_bart_model(model_name, data)
         
     | 
| 271 | 
         | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
             
            def transcribe_audio_from_redis(audio_file):
         
     | 
| 274 | 
         
             
                audio_file_path = "audio_file.wav"
         
     | 
| 275 | 
         
             
                with open(audio_file_path, "wb") as f:
         
     | 
| 
         | 
|
| 283 | 
         
             
                transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
         
     | 
| 284 | 
         
             
                return transcription[0]
         
     | 
| 285 | 
         | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
             
            def generate_image_from_redis(model_name, prompt, model_type):
         
     | 
| 288 | 
         
             
                if model_type == "diffusers":
         
     | 
| 289 | 
         
             
                    image = generate_diffusers_image_from_redis(model_name, prompt)
         
     | 
| 
         | 
|
| 293 | 
         
             
                    image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
         
     | 
| 294 | 
         
             
                return image
         
     | 
| 295 | 
         | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
             
            def generate_video_from_redis(prompt):
         
     | 
| 298 | 
         
            +
                pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16,
         
     | 
| 299 | 
         
            +
                                                         variant="fp16")
         
     | 
| 300 | 
         
             
                pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
         
     | 
| 301 | 
         
             
                pipe.enable_model_cpu_offload()
         
     | 
| 302 | 
         
             
                video_frames = pipe(prompt, num_inference_steps=25).frames
         
     | 
| 
         | 
|
| 305 | 
         
             
                redis_client.set(f"video_{unique_id}", video_path)
         
     | 
| 306 | 
         
             
                return video_path
         
     | 
| 307 | 
         | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
             
            def generate_random_response(prompts, generator):
         
     | 
| 310 | 
         
             
                responses = []
         
     | 
| 311 | 
         
             
                for prompt in prompts:
         
     | 
| 
         | 
|
| 313 | 
         
             
                    responses.append(response)
         
     | 
| 314 | 
         
             
                return responses
         
     | 
| 315 | 
         | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
             
            def process_parallel(tasks):
         
     | 
| 318 | 
         
             
                with multiprocessing.Pool() as pool:
         
     | 
| 319 | 
         
             
                    results = pool.map(lambda task: task(), tasks)
         
     | 
| 320 | 
         
             
                return results
         
     | 
| 321 | 
         | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
             
            def generate_response_from_prompt(prompt, model_name="google/flan-t5-xl"):
         
     | 
| 324 | 
         
             
                generator = pipeline('text-generation', model=model_name, tokenizer=model_name)
         
     | 
| 325 | 
         
             
                responses = generate_random_response([prompt], generator)
         
     | 
| 326 | 
         
             
                return responses[0]
         
     | 
| 327 | 
         | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
             
            def generate_image_from_prompt(prompt, image_type, model_name="CompVis/stable-diffusion-v1-4"):
         
     | 
| 330 | 
         
             
                if image_type == "diffusers":
         
     | 
| 331 | 
         
             
                    image = generate_diffusers_image_from_redis(model_name, prompt)
         
     | 
| 
         | 
|
| 335 | 
         
             
                    image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
         
     | 
| 336 | 
         
             
                return image
         
     | 
| 337 | 
         | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
             
            def gradio_app():
         
     | 
| 340 | 
         
             
                with gr.Blocks() as app:
         
     | 
| 341 | 
         
            +
                    gr.Markdown(
         
     | 
| 342 | 
         
            +
                        """
         
     | 
| 343 | 
         
            +
                        # IA Generativa con Transformers y Diffusers
         
     | 
| 344 | 
         
            +
                        Explora diferentes modelos de IA para generar texto, im谩genes, audio, video y m谩s.
         
     | 
| 345 | 
         
            +
                        """
         
     | 
| 346 | 
         
            +
                    )
         
     | 
| 347 | 
         
            +
             
     | 
| 348 | 
         
            +
                    with gr.Tab("Texto"):
         
     | 
| 349 | 
         
            +
                        with gr.Row():
         
     | 
| 350 | 
         
            +
                            with gr.Column():
         
     | 
| 351 | 
         
            +
                                prompt_text = gr.Textbox(label="Texto de Entrada", placeholder="Ingresa tu prompt de texto aqu铆...")
         
     | 
| 352 | 
         
            +
                                text_button = gr.Button("Generar Texto", variant="primary")
         
     | 
| 353 | 
         
            +
                            with gr.Column():
         
     | 
| 354 | 
         
            +
                                text_output = gr.Textbox(label="Respuesta")
         
     | 
| 355 | 
         
            +
                        text_button.click(generate_response_from_prompt, inputs=prompt_text, outputs=text_output)
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                    with gr.Tab("Imagen"):
         
     | 
| 358 | 
         
            +
                        with gr.Row():
         
     | 
| 359 | 
         
            +
                            with gr.Column():
         
     | 
| 360 | 
         
            +
                                prompt_image = gr.Textbox(label="Prompt de Imagen",
         
     | 
| 361 | 
         
            +
                                                         placeholder="Ingresa tu prompt de imagen aqu铆...")
         
     | 
| 362 | 
         
            +
                                image_type = gr.Dropdown(["diffusers", "stable-diffusion", "img2img"], label="Tipo de Modelo",
         
     | 
| 363 | 
         
            +
                                                        value="stable-diffusion")
         
     | 
| 364 | 
         
            +
                                model_name_image = gr.Textbox(label="Nombre del Modelo",
         
     | 
| 365 | 
         
            +
                                                              value="CompVis/stable-diffusion-v1-4")
         
     | 
| 366 | 
         
            +
                                image_button = gr.Button("Generar Imagen", variant="primary")
         
     | 
| 367 | 
         
            +
                            with gr.Column():
         
     | 
| 368 | 
         
            +
                                image_output = gr.Image(label="Imagen Generada")
         
     | 
| 369 | 
         
            +
                        image_button.click(generate_image_from_prompt, inputs=[prompt_image, image_type, model_name_image],
         
     | 
| 370 | 
         
            +
                                           outputs=image_output)
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                    with gr.Tab("Video"):
         
     | 
| 373 | 
         
            +
                        with gr.Row():
         
     | 
| 374 | 
         
            +
                            with gr.Column():
         
     | 
| 375 | 
         
            +
                                prompt_video = gr.Textbox(label="Prompt de Video", placeholder="Ingresa tu prompt de video aqu铆...")
         
     | 
| 376 | 
         
            +
                                video_button = gr.Button("Generar Video", variant="primary")
         
     | 
| 377 | 
         
            +
                            with gr.Column():
         
     | 
| 378 | 
         
            +
                                video_output = gr.Video(label="Video Generado")
         
     | 
| 379 | 
         
            +
                        video_button.click(generate_video_from_redis, inputs=prompt_video, outputs=video_output)
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                    with gr.Tab("Audio"):
         
     | 
| 382 | 
         
            +
                        with gr.Row():
         
     | 
| 383 | 
         
            +
                            with gr.Column():
         
     | 
| 384 | 
         
            +
                                model_name_audio = gr.Textbox(label="Nombre del Modelo", value="facebook/musicgen-small")
         
     | 
| 385 | 
         
            +
                                text_prompts_audio = gr.Textbox(label="Prompts de Audio",
         
     | 
| 386 | 
         
            +
                                                               placeholder="Ingresa tus prompts de audio aqu铆...")
         
     | 
| 387 | 
         
            +
                                audio_button = gr.Button("Generar Audio", variant="primary")
         
     | 
| 388 | 
         
            +
                            with gr.Column():
         
     | 
| 389 | 
         
            +
                                audio_output = gr.Audio(label="Audio Generado")
         
     | 
| 390 | 
         
            +
                        audio_button.click(generate_musicgen_audio_from_redis, inputs=[model_name_audio, text_prompts_audio],
         
     | 
| 391 | 
         
            +
                                           outputs=audio_output)
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                    with gr.Tab("Transcripci贸n"):
         
     | 
| 394 | 
         
            +
                        with gr.Row():
         
     | 
| 395 | 
         
            +
                            with gr.Column():
         
     | 
| 396 | 
         
            +
                                audio_file = gr.Audio(type="filepath", label="Archivo de Audio")
         
     | 
| 397 | 
         
            +
                                audio_button = gr.Button("Transcribir Audio", variant="primary")
         
     | 
| 398 | 
         
            +
                            with gr.Column():
         
     | 
| 399 | 
         
            +
                                transcription_output = gr.Textbox(label="Transcripci贸n")
         
     | 
| 400 | 
         
            +
                        audio_button.click(transcribe_audio_from_redis, inputs=audio_file, outputs=transcription_output)
         
     | 
| 401 | 
         
            +
             
     | 
| 402 | 
         
            +
                    with gr.Tab("Traducci贸n"):
         
     | 
| 403 | 
         
            +
                        with gr.Row():
         
     | 
| 404 | 
         
            +
                            with gr.Column():
         
     | 
| 405 | 
         
            +
                                model_name_translate = gr.Textbox(label="Nombre del Modelo", value="Helsinki-NLP/opus-mt-en-es")
         
     | 
| 406 | 
         
            +
                                text_input = gr.Textbox(label="Texto a Traducir", placeholder="Ingresa el texto a traducir...")
         
     | 
| 407 | 
         
            +
                                src_lang_input = gr.Textbox(label="Idioma de Origen", value="en")
         
     | 
| 408 | 
         
            +
                                tgt_lang_input = gr.Textbox(label="Idioma de Destino", value="es")
         
     | 
| 409 | 
         
            +
                                translate_button = gr.Button("Traducir Texto", variant="primary")
         
     | 
| 410 | 
         
            +
                            with gr.Column():
         
     | 
| 411 | 
         
            +
                                translation_output = gr.Textbox(label="Traducci贸n")
         
     | 
| 412 | 
         
            +
                        translate_button.click(translate_text_from_redis,
         
     | 
| 413 | 
         
            +
                                               inputs=[model_name_translate, text_input, src_lang_input, tgt_lang_input],
         
     | 
| 414 | 
         
            +
                                               outputs=translation_output)
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                    with gr.Tab("Resumen"):
         
     | 
| 417 | 
         
            +
                        with gr.Row():
         
     | 
| 418 | 
         
            +
                            with gr.Column():
         
     | 
| 419 | 
         
            +
                                model_name_summarize = gr.Textbox(label="Nombre del Modelo", value="facebook/bart-large-cnn")
         
     | 
| 420 | 
         
            +
                                text_to_summarize = gr.Textbox(label="Texto para Resumir",
         
     | 
| 421 | 
         
            +
                                                              placeholder="Ingresa el texto a resumir...")
         
     | 
| 422 | 
         
            +
                                summarize_button = gr.Button("Generar Resumen", variant="primary")
         
     | 
| 423 | 
         
            +
                            with gr.Column():
         
     | 
| 424 | 
         
            +
                                summary_output = gr.Textbox(label="Resumen")
         
     | 
| 425 | 
         
            +
                        summarize_button.click(summarize_text_from_redis, inputs=[model_name_summarize, text_to_summarize],
         
     | 
| 426 | 
         
            +
                                               outputs=summary_output)
         
     | 
| 427 | 
         | 
| 428 | 
         
             
                app.launch()
         
     | 
| 429 | 
         | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
             
            if __name__ == "__main__":
         
     | 
| 432 | 
         
             
                gradio_app()
         
     |