Spaces:
Build error
Build error
Create akn.py
Browse files
akn.py
ADDED
|
@@ -0,0 +1,823 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pickle
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from diffusers import (
|
| 6 |
+
StableDiffusionPipeline,
|
| 7 |
+
StableDiffusionImg2ImgPipeline,
|
| 8 |
+
FluxPipeline,
|
| 9 |
+
DiffusionPipeline,
|
| 10 |
+
DPMSolverMultistepScheduler,
|
| 11 |
+
)
|
| 12 |
+
from transformers import (
|
| 13 |
+
pipeline as transformers_pipeline,
|
| 14 |
+
AutoModelForCausalLM,
|
| 15 |
+
AutoTokenizer,
|
| 16 |
+
GPT2Tokenizer,
|
| 17 |
+
GPT2Model,
|
| 18 |
+
AutoModel
|
| 19 |
+
)
|
| 20 |
+
from audiocraft.models import musicgen
|
| 21 |
+
import gradio as gr
|
| 22 |
+
from huggingface_hub import snapshot_download, HfApi, HfFolder
|
| 23 |
+
import io
|
| 24 |
+
import time
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from google.cloud import storage
|
| 27 |
+
import json
|
| 28 |
+
|
| 29 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 30 |
+
gcs_credentials = json.loads(os.getenv("GCS_CREDENTIALS"))
|
| 31 |
+
gcs_bucket_name = os.getenv("GCS_BUCKET_NAME")
|
| 32 |
+
|
| 33 |
+
HfFolder.save_token(hf_token)
|
| 34 |
+
|
| 35 |
+
storage_client = storage.Client.from_service_account_info(gcs_credentials)
|
| 36 |
+
bucket = storage_client.bucket(gcs_bucket_name)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def load_object_from_gcs(blob_name):
|
| 40 |
+
blob = bucket.blob(blob_name)
|
| 41 |
+
if blob.exists():
|
| 42 |
+
return pickle.loads(blob.download_as_bytes())
|
| 43 |
+
return None
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def save_object_to_gcs(blob_name, obj):
|
| 47 |
+
blob = bucket.blob(blob_name)
|
| 48 |
+
blob.upload_from_string(pickle.dumps(obj))
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_model_or_download(model_id, blob_name, loader_func):
|
| 52 |
+
model = load_object_from_gcs(blob_name)
|
| 53 |
+
if model:
|
| 54 |
+
return model
|
| 55 |
+
try:
|
| 56 |
+
with tqdm(total=1, desc=f"Downloading {model_id}") as pbar:
|
| 57 |
+
model = loader_func(model_id, torch_dtype=torch.float16)
|
| 58 |
+
pbar.update(1)
|
| 59 |
+
save_object_to_gcs(blob_name, model)
|
| 60 |
+
return model
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"Failed to load or save model: {e}")
|
| 63 |
+
return None
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def generate_image(prompt):
|
| 67 |
+
blob_name = f"diffusers/generated_image:{prompt}"
|
| 68 |
+
image_bytes = load_object_from_gcs(blob_name)
|
| 69 |
+
if not image_bytes:
|
| 70 |
+
try:
|
| 71 |
+
with tqdm(total=1, desc="Generating image") as pbar:
|
| 72 |
+
image = text_to_image_pipeline(prompt).images[0]
|
| 73 |
+
pbar.update(1)
|
| 74 |
+
buffered = io.BytesIO()
|
| 75 |
+
image.save(buffered, format="JPEG")
|
| 76 |
+
image_bytes = buffered.getvalue()
|
| 77 |
+
save_object_to_gcs(blob_name, image_bytes)
|
| 78 |
+
except Exception as e:
|
| 79 |
+
print(f"Failed to generate image: {e}")
|
| 80 |
+
return None
|
| 81 |
+
return image_bytes
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def edit_image_with_prompt(image_bytes, prompt, strength=0.75):
|
| 85 |
+
blob_name = f"diffusers/edited_image:{prompt}:{strength}"
|
| 86 |
+
edited_image_bytes = load_object_from_gcs(blob_name)
|
| 87 |
+
if not edited_image_bytes:
|
| 88 |
+
try:
|
| 89 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 90 |
+
with tqdm(total=1, desc="Editing image") as pbar:
|
| 91 |
+
edited_image = img2img_pipeline(
|
| 92 |
+
prompt=prompt, image=image, strength=strength
|
| 93 |
+
).images[0]
|
| 94 |
+
pbar.update(1)
|
| 95 |
+
buffered = io.BytesIO()
|
| 96 |
+
edited_image.save(buffered, format="JPEG")
|
| 97 |
+
edited_image_bytes = buffered.getvalue()
|
| 98 |
+
save_object_to_gcs(blob_name, edited_image_bytes)
|
| 99 |
+
except Exception as e:
|
| 100 |
+
print(f"Failed to edit image: {e}")
|
| 101 |
+
return None
|
| 102 |
+
return edited_image_bytes
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def generate_song(prompt, duration=10):
|
| 106 |
+
blob_name = f"music/generated_song:{prompt}:{duration}"
|
| 107 |
+
song_bytes = load_object_from_gcs(blob_name)
|
| 108 |
+
if not song_bytes:
|
| 109 |
+
try:
|
| 110 |
+
with tqdm(total=1, desc="Generating song") as pbar:
|
| 111 |
+
song = music_gen(prompt, duration=duration)
|
| 112 |
+
pbar.update(1)
|
| 113 |
+
song_bytes = song[0].getvalue()
|
| 114 |
+
save_object_to_gcs(blob_name, song_bytes)
|
| 115 |
+
except Exception as e:
|
| 116 |
+
print(f"Failed to generate song: {e}")
|
| 117 |
+
return None
|
| 118 |
+
return song_bytes
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def generate_text(prompt):
|
| 122 |
+
blob_name = f"transformers/generated_text:{prompt}"
|
| 123 |
+
text = load_object_from_gcs(blob_name)
|
| 124 |
+
if not text:
|
| 125 |
+
try:
|
| 126 |
+
with tqdm(total=1, desc="Generating text") as pbar:
|
| 127 |
+
text = text_gen_pipeline(prompt, max_new_tokens=256)[0][
|
| 128 |
+
"generated_text"
|
| 129 |
+
].strip()
|
| 130 |
+
pbar.update(1)
|
| 131 |
+
save_object_to_gcs(blob_name, text)
|
| 132 |
+
except Exception as e:
|
| 133 |
+
print(f"Failed to generate text: {e}")
|
| 134 |
+
return None
|
| 135 |
+
return text
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def generate_flux_image(prompt):
|
| 139 |
+
blob_name = f"diffusers/generated_flux_image:{prompt}"
|
| 140 |
+
flux_image_bytes = load_object_from_gcs(blob_name)
|
| 141 |
+
if not flux_image_bytes:
|
| 142 |
+
try:
|
| 143 |
+
with tqdm(total=1, desc="Generating FLUX image") as pbar:
|
| 144 |
+
flux_image = flux_pipeline(
|
| 145 |
+
prompt,
|
| 146 |
+
guidance_scale=0.0,
|
| 147 |
+
num_inference_steps=4,
|
| 148 |
+
max_length=256,
|
| 149 |
+
generator=torch.Generator("cpu").manual_seed(0),
|
| 150 |
+
).images[0]
|
| 151 |
+
pbar.update(1)
|
| 152 |
+
buffered = io.BytesIO()
|
| 153 |
+
flux_image.save(buffered, format="JPEG")
|
| 154 |
+
flux_image_bytes = buffered.getvalue()
|
| 155 |
+
save_object_to_gcs(blob_name, flux_image_bytes)
|
| 156 |
+
except Exception as e:
|
| 157 |
+
print(f"Failed to generate flux image: {e}")
|
| 158 |
+
return None
|
| 159 |
+
return flux_image_bytes
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def generate_code(prompt):
|
| 163 |
+
blob_name = f"transformers/generated_code:{prompt}"
|
| 164 |
+
code = load_object_from_gcs(blob_name)
|
| 165 |
+
if not code:
|
| 166 |
+
try:
|
| 167 |
+
with tqdm(total=1, desc="Generating code") as pbar:
|
| 168 |
+
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt")
|
| 169 |
+
outputs = starcoder_model.generate(inputs, max_new_tokens=256)
|
| 170 |
+
code = starcoder_tokenizer.decode(outputs[0])
|
| 171 |
+
pbar.update(1)
|
| 172 |
+
save_object_to_gcs(blob_name, code)
|
| 173 |
+
except Exception as e:
|
| 174 |
+
print(f"Failed to generate code: {e}")
|
| 175 |
+
return None
|
| 176 |
+
return code
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def test_model_meta_llama():
|
| 180 |
+
blob_name = "transformers/meta_llama_test_response"
|
| 181 |
+
response = load_object_from_gcs(blob_name)
|
| 182 |
+
if not response:
|
| 183 |
+
try:
|
| 184 |
+
messages = [
|
| 185 |
+
{
|
| 186 |
+
"role": "system",
|
| 187 |
+
"content": "You are a pirate chatbot who always responds in pirate speak!",
|
| 188 |
+
},
|
| 189 |
+
{"role": "user", "content": "Who are you?"},
|
| 190 |
+
]
|
| 191 |
+
with tqdm(total=1, desc="Testing Meta-Llama") as pbar:
|
| 192 |
+
response = meta_llama_pipeline(messages, max_new_tokens=256)[0][
|
| 193 |
+
"generated_text"
|
| 194 |
+
].strip()
|
| 195 |
+
pbar.update(1)
|
| 196 |
+
save_object_to_gcs(blob_name, response)
|
| 197 |
+
except Exception as e:
|
| 198 |
+
print(f"Failed to test Meta-Llama: {e}")
|
| 199 |
+
return None
|
| 200 |
+
return response
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def generate_image_sdxl(prompt):
|
| 204 |
+
blob_name = f"diffusers/generated_image_sdxl:{prompt}"
|
| 205 |
+
image_bytes = load_object_from_gcs(blob_name)
|
| 206 |
+
if not image_bytes:
|
| 207 |
+
try:
|
| 208 |
+
with tqdm(total=1, desc="Generating SDXL image") as pbar:
|
| 209 |
+
image = base(
|
| 210 |
+
prompt=prompt,
|
| 211 |
+
num_inference_steps=40,
|
| 212 |
+
denoising_end=0.8,
|
| 213 |
+
output_type="latent",
|
| 214 |
+
).images
|
| 215 |
+
image = refiner(
|
| 216 |
+
prompt=prompt,
|
| 217 |
+
num_inference_steps=40,
|
| 218 |
+
denoising_start=0.8,
|
| 219 |
+
image=image,
|
| 220 |
+
).images[0]
|
| 221 |
+
pbar.update(1)
|
| 222 |
+
buffered = io.BytesIO()
|
| 223 |
+
image.save(buffered, format="JPEG")
|
| 224 |
+
image_bytes = buffered.getvalue()
|
| 225 |
+
save_object_to_gcs(blob_name, image_bytes)
|
| 226 |
+
except Exception as e:
|
| 227 |
+
print(f"Failed to generate SDXL image: {e}")
|
| 228 |
+
return None
|
| 229 |
+
return image_bytes
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def generate_musicgen_melody(prompt):
|
| 233 |
+
blob_name = f"music/generated_musicgen_melody:{prompt}"
|
| 234 |
+
song_bytes = load_object_from_gcs(blob_name)
|
| 235 |
+
if not song_bytes:
|
| 236 |
+
try:
|
| 237 |
+
with tqdm(total=1, desc="Generating MusicGen melody") as pbar:
|
| 238 |
+
melody, sr = torchaudio.load("./assets/bach.mp3")
|
| 239 |
+
wav = music_gen_melody.generate_with_chroma(
|
| 240 |
+
[prompt], melody[None].expand(3, -1, -1), sr
|
| 241 |
+
)
|
| 242 |
+
pbar.update(1)
|
| 243 |
+
song_bytes = wav[0].getvalue()
|
| 244 |
+
save_object_to_gcs(blob_name, song_bytes)
|
| 245 |
+
except Exception as e:
|
| 246 |
+
print(f"Failed to generate MusicGen melody: {e}")
|
| 247 |
+
return None
|
| 248 |
+
return song_bytes
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def generate_musicgen_large(prompt):
|
| 252 |
+
blob_name = f"music/generated_musicgen_large:{prompt}"
|
| 253 |
+
song_bytes = load_object_from_gcs(blob_name)
|
| 254 |
+
if not song_bytes:
|
| 255 |
+
try:
|
| 256 |
+
with tqdm(total=1, desc="Generating MusicGen large") as pbar:
|
| 257 |
+
wav = music_gen_large.generate([prompt])
|
| 258 |
+
pbar.update(1)
|
| 259 |
+
song_bytes = wav[0].getvalue()
|
| 260 |
+
save_object_to_gcs(blob_name, song_bytes)
|
| 261 |
+
except Exception as e:
|
| 262 |
+
print(f"Failed to generate MusicGen large: {e}")
|
| 263 |
+
return None
|
| 264 |
+
return song_bytes
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def transcribe_audio(audio_sample):
|
| 268 |
+
blob_name = f"transformers/transcribed_audio:{hash(audio_sample.tobytes())}"
|
| 269 |
+
text = load_object_from_gcs(blob_name)
|
| 270 |
+
if not text:
|
| 271 |
+
try:
|
| 272 |
+
with tqdm(total=1, desc="Transcribing audio") as pbar:
|
| 273 |
+
text = whisper_pipeline(audio_sample.copy(), batch_size=8)["text"]
|
| 274 |
+
pbar.update(1)
|
| 275 |
+
save_object_to_gcs(blob_name, text)
|
| 276 |
+
except Exception as e:
|
| 277 |
+
print(f"Failed to transcribe audio: {e}")
|
| 278 |
+
return None
|
| 279 |
+
return text
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
def generate_mistral_instruct(prompt):
|
| 283 |
+
blob_name = f"transformers/generated_mistral_instruct:{prompt}"
|
| 284 |
+
response = load_object_from_gcs(blob_name)
|
| 285 |
+
if not response:
|
| 286 |
+
try:
|
| 287 |
+
conversation = [{"role": "user", "content": prompt}]
|
| 288 |
+
with tqdm(total=1, desc="Generating Mistral Instruct response") as pbar:
|
| 289 |
+
inputs = mistral_instruct_tokenizer.apply_chat_template(
|
| 290 |
+
conversation,
|
| 291 |
+
tools=tools,
|
| 292 |
+
add_generation_prompt=True,
|
| 293 |
+
return_dict=True,
|
| 294 |
+
return_tensors="pt",
|
| 295 |
+
)
|
| 296 |
+
outputs = mistral_instruct_model.generate(
|
| 297 |
+
**inputs, max_new_tokens=1000
|
| 298 |
+
)
|
| 299 |
+
response = mistral_instruct_tokenizer.decode(
|
| 300 |
+
outputs[0], skip_special_tokens=True
|
| 301 |
+
)
|
| 302 |
+
pbar.update(1)
|
| 303 |
+
save_object_to_gcs(blob_name, response)
|
| 304 |
+
except Exception as e:
|
| 305 |
+
print(f"Failed to generate Mistral Instruct response: {e}")
|
| 306 |
+
return None
|
| 307 |
+
return response
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def generate_mistral_nemo(prompt):
|
| 311 |
+
blob_name = f"transformers/generated_mistral_nemo:{prompt}"
|
| 312 |
+
response = load_object_from_gcs(blob_name)
|
| 313 |
+
if not response:
|
| 314 |
+
try:
|
| 315 |
+
conversation = [{"role": "user", "content": prompt}]
|
| 316 |
+
with tqdm(total=1, desc="Generating Mistral Nemo response") as pbar:
|
| 317 |
+
inputs = mistral_nemo_tokenizer.apply_chat_template(
|
| 318 |
+
conversation,
|
| 319 |
+
tools=tools,
|
| 320 |
+
add_generation_prompt=True,
|
| 321 |
+
return_dict=True,
|
| 322 |
+
return_tensors="pt",
|
| 323 |
+
)
|
| 324 |
+
outputs = mistral_nemo_model.generate(**inputs, max_new_tokens=1000)
|
| 325 |
+
response = mistral_nemo_tokenizer.decode(
|
| 326 |
+
outputs[0], skip_special_tokens=True
|
| 327 |
+
)
|
| 328 |
+
pbar.update(1)
|
| 329 |
+
save_object_to_gcs(blob_name, response)
|
| 330 |
+
except Exception as e:
|
| 331 |
+
print(f"Failed to generate Mistral Nemo response: {e}")
|
| 332 |
+
return None
|
| 333 |
+
return response
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
def generate_gpt2_xl(prompt):
|
| 337 |
+
blob_name = f"transformers/generated_gpt2_xl:{prompt}"
|
| 338 |
+
response = load_object_from_gcs(blob_name)
|
| 339 |
+
if not response:
|
| 340 |
+
try:
|
| 341 |
+
with tqdm(total=1, desc="Generating GPT-2 XL response") as pbar:
|
| 342 |
+
inputs = gpt2_xl_tokenizer(prompt, return_tensors="pt")
|
| 343 |
+
outputs = gpt2_xl_model(**inputs)
|
| 344 |
+
response = gpt2_xl_tokenizer.decode(
|
| 345 |
+
outputs[0][0], skip_special_tokens=True
|
| 346 |
+
)
|
| 347 |
+
pbar.update(1)
|
| 348 |
+
save_object_to_gcs(blob_name, response)
|
| 349 |
+
except Exception as e:
|
| 350 |
+
print(f"Failed to generate GPT-2 XL response: {e}")
|
| 351 |
+
return None
|
| 352 |
+
return response
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def store_user_question(question):
|
| 356 |
+
blob_name = "user_questions.txt"
|
| 357 |
+
blob = bucket.blob(blob_name)
|
| 358 |
+
if blob.exists():
|
| 359 |
+
blob.download_to_filename("user_questions.txt")
|
| 360 |
+
with open("user_questions.txt", "a") as f:
|
| 361 |
+
f.write(question + "\n")
|
| 362 |
+
blob.upload_from_filename("user_questions.txt")
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def retrain_models():
|
| 366 |
+
pass
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
def generate_text_to_video_ms_1_7b(prompt, num_frames=200):
|
| 370 |
+
blob_name = f"diffusers/text_to_video_ms_1_7b:{prompt}:{num_frames}"
|
| 371 |
+
video_bytes = load_object_from_gcs(blob_name)
|
| 372 |
+
if not video_bytes:
|
| 373 |
+
try:
|
| 374 |
+
with tqdm(total=1, desc="Generating video") as pbar:
|
| 375 |
+
video_frames = text_to_video_ms_1_7b_pipeline(
|
| 376 |
+
prompt, num_inference_steps=25, num_frames=num_frames
|
| 377 |
+
).frames
|
| 378 |
+
pbar.update(1)
|
| 379 |
+
video_path = export_to_video(video_frames)
|
| 380 |
+
with open(video_path, "rb") as f:
|
| 381 |
+
video_bytes = f.read()
|
| 382 |
+
save_object_to_gcs(blob_name, video_bytes)
|
| 383 |
+
os.remove(video_path)
|
| 384 |
+
except Exception as e:
|
| 385 |
+
print(f"Failed to generate video: {e}")
|
| 386 |
+
return None
|
| 387 |
+
return video_bytes
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def generate_text_to_video_ms_1_7b_short(prompt):
|
| 391 |
+
blob_name = f"diffusers/text_to_video_ms_1_7b_short:{prompt}"
|
| 392 |
+
video_bytes = load_object_from_gcs(blob_name)
|
| 393 |
+
if not video_bytes:
|
| 394 |
+
try:
|
| 395 |
+
with tqdm(total=1, desc="Generating short video") as pbar:
|
| 396 |
+
video_frames = text_to_video_ms_1_7b_short_pipeline(
|
| 397 |
+
prompt, num_inference_steps=25
|
| 398 |
+
).frames
|
| 399 |
+
pbar.update(1)
|
| 400 |
+
video_path = export_to_video(video_frames)
|
| 401 |
+
with open(video_path, "rb") as f:
|
| 402 |
+
video_bytes = f.read()
|
| 403 |
+
save_object_to_gcs(blob_name, video_bytes)
|
| 404 |
+
os.remove(video_path)
|
| 405 |
+
except Exception as e:
|
| 406 |
+
print(f"Failed to generate short video: {e}")
|
| 407 |
+
return None
|
| 408 |
+
return video_bytes
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
text_to_image_pipeline = get_model_or_download(
|
| 412 |
+
"stabilityai/stable-diffusion-2",
|
| 413 |
+
"diffusers/text_to_image_model",
|
| 414 |
+
StableDiffusionPipeline.from_pretrained,
|
| 415 |
+
)
|
| 416 |
+
img2img_pipeline = get_model_or_download(
|
| 417 |
+
"CompVis/stable-diffusion-v1-4",
|
| 418 |
+
"diffusers/img2img_model",
|
| 419 |
+
StableDiffusionImg2ImgPipeline.from_pretrained,
|
| 420 |
+
)
|
| 421 |
+
flux_pipeline = get_model_or_download(
|
| 422 |
+
"black-forest-labs/FLUX.1-schnell",
|
| 423 |
+
"diffusers/flux_model",
|
| 424 |
+
FluxPipeline.from_pretrained,
|
| 425 |
+
)
|
| 426 |
+
text_gen_pipeline = transformers_pipeline(
|
| 427 |
+
"text-generation", model="google/gemma-2-9b", tokenizer="google/gemma-2-9b"
|
| 428 |
+
)
|
| 429 |
+
music_gen = (
|
| 430 |
+
load_object_from_gcs("music/music_gen")
|
| 431 |
+
or musicgen.MusicGen.get_pretrained("melody")
|
| 432 |
+
)
|
| 433 |
+
meta_llama_pipeline = get_model_or_download(
|
| 434 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 435 |
+
"transformers/meta_llama_model",
|
| 436 |
+
transformers_pipeline,
|
| 437 |
+
)
|
| 438 |
+
starcoder_model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder")
|
| 439 |
+
starcoder_tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder")
|
| 440 |
+
|
| 441 |
+
base = DiffusionPipeline.from_pretrained(
|
| 442 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 443 |
+
torch_dtype=torch.float16,
|
| 444 |
+
variant="fp16",
|
| 445 |
+
use_safetensors=True,
|
| 446 |
+
)
|
| 447 |
+
refiner = DiffusionPipeline.from_pretrained(
|
| 448 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
| 449 |
+
text_encoder_2=base.text_encoder_2,
|
| 450 |
+
vae=base.vae,
|
| 451 |
+
torch_dtype=torch.float16,
|
| 452 |
+
use_safetensors=True,
|
| 453 |
+
variant="fp16",
|
| 454 |
+
)
|
| 455 |
+
music_gen_melody = musicgen.MusicGen.get_pretrained("melody")
|
| 456 |
+
music_gen_melody.set_generation_params(duration=8)
|
| 457 |
+
music_gen_large = musicgen.MusicGen.get_pretrained("large")
|
| 458 |
+
music_gen_large.set_generation_params(duration=8)
|
| 459 |
+
whisper_pipeline = transformers_pipeline(
|
| 460 |
+
"automatic-speech-recognition",
|
| 461 |
+
model="openai/whisper-small",
|
| 462 |
+
chunk_length_s=30,
|
| 463 |
+
)
|
| 464 |
+
mistral_instruct_model = AutoModelForCausalLM.from_pretrained(
|
| 465 |
+
"mistralai/Mistral-Large-Instruct-2407",
|
| 466 |
+
torch_dtype=torch.bfloat16,
|
| 467 |
+
device_map="auto",
|
| 468 |
+
)
|
| 469 |
+
mistral_instruct_tokenizer = AutoTokenizer.from_pretrained(
|
| 470 |
+
"mistralai/Mistral-Large-Instruct-2407"
|
| 471 |
+
)
|
| 472 |
+
mistral_nemo_model = AutoModelForCausalLM.from_pretrained(
|
| 473 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
| 474 |
+
torch_dtype=torch.bfloat16,
|
| 475 |
+
device_map="auto",
|
| 476 |
+
)
|
| 477 |
+
mistral_nemo_tokenizer = AutoTokenizer.from_pretrained(
|
| 478 |
+
"mistralai/Mistral-Nemo-Instruct-2407"
|
| 479 |
+
)
|
| 480 |
+
gpt2_xl_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-xl")
|
| 481 |
+
gpt2_xl_model = GPT2Model.from_pretrained("gpt2-xl")
|
| 482 |
+
|
| 483 |
+
llama_3_groq_70b_tool_use_pipeline = transformers_pipeline(
|
| 484 |
+
"text-generation", model="Groq/Llama-3-Groq-70B-Tool-Use"
|
| 485 |
+
)
|
| 486 |
+
phi_3_5_mini_instruct_model = AutoModelForCausalLM.from_pretrained(
|
| 487 |
+
"microsoft/Phi-3.5-mini-instruct", torch_dtype="auto", trust_remote_code=True
|
| 488 |
+
)
|
| 489 |
+
phi_3_5_mini_instruct_tokenizer = AutoTokenizer.from_pretrained(
|
| 490 |
+
"microsoft/Phi-3.5-mini-instruct"
|
| 491 |
+
)
|
| 492 |
+
phi_3_5_mini_instruct_pipeline = transformers_pipeline(
|
| 493 |
+
"text-generation",
|
| 494 |
+
model=phi_3_5_mini_instruct_model,
|
| 495 |
+
tokenizer=phi_3_5_mini_instruct_tokenizer,
|
| 496 |
+
)
|
| 497 |
+
meta_llama_3_1_8b_pipeline = transformers_pipeline(
|
| 498 |
+
"text-generation",
|
| 499 |
+
model="meta-llama/Meta-Llama-3.1-8B",
|
| 500 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 501 |
+
)
|
| 502 |
+
meta_llama_3_1_70b_pipeline = transformers_pipeline(
|
| 503 |
+
"text-generation",
|
| 504 |
+
model="meta-llama/Meta-Llama-3.1-70B",
|
| 505 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 506 |
+
)
|
| 507 |
+
medical_text_summarization_pipeline = transformers_pipeline(
|
| 508 |
+
"summarization", model="your/medical_text_summarization_model"
|
| 509 |
+
)
|
| 510 |
+
bart_large_cnn_summarization_pipeline = transformers_pipeline(
|
| 511 |
+
"summarization", model="facebook/bart-large-cnn"
|
| 512 |
+
)
|
| 513 |
+
flux_1_dev_pipeline = FluxPipeline.from_pretrained(
|
| 514 |
+
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
|
| 515 |
+
)
|
| 516 |
+
flux_1_dev_pipeline.enable_model_cpu_offload()
|
| 517 |
+
gemma_2_9b_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-9b")
|
| 518 |
+
gemma_2_9b_it_pipeline = transformers_pipeline(
|
| 519 |
+
"text-generation",
|
| 520 |
+
model="google/gemma-2-9b-it",
|
| 521 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 522 |
+
)
|
| 523 |
+
gemma_2_2b_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-2b")
|
| 524 |
+
gemma_2_2b_it_pipeline = transformers_pipeline(
|
| 525 |
+
"text-generation",
|
| 526 |
+
model="google/gemma-2-2b-it",
|
| 527 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 528 |
+
)
|
| 529 |
+
gemma_2_27b_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
|
| 530 |
+
gemma_2_27b_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-27b")
|
| 531 |
+
gemma_2_27b_it_pipeline = transformers_pipeline(
|
| 532 |
+
"text-generation",
|
| 533 |
+
model="google/gemma-2-27b-it",
|
| 534 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 535 |
+
)
|
| 536 |
+
text_to_video_ms_1_7b_pipeline = DiffusionPipeline.from_pretrained(
|
| 537 |
+
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
|
| 538 |
+
)
|
| 539 |
+
text_to_video_ms_1_7b_pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 540 |
+
text_to_video_ms_1_7b_pipeline.scheduler.config
|
| 541 |
+
)
|
| 542 |
+
text_to_video_ms_1_7b_pipeline.enable_model_cpu_offload()
|
| 543 |
+
text_to_video_ms_1_7b_pipeline.enable_vae_slicing()
|
| 544 |
+
text_to_video_ms_1_7b_short_pipeline = DiffusionPipeline.from_pretrained(
|
| 545 |
+
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
|
| 546 |
+
)
|
| 547 |
+
text_to_video_ms_1_7b_short_pipeline.scheduler = (
|
| 548 |
+
DPMSolverMultistepScheduler.from_config(
|
| 549 |
+
text_to_video_ms_1_7b_short_pipeline.scheduler.config
|
| 550 |
+
)
|
| 551 |
+
)
|
| 552 |
+
text_to_video_ms_1_7b_short_pipeline.enable_model_cpu_offload()
|
| 553 |
+
|
| 554 |
+
tools = []
|
| 555 |
+
|
| 556 |
+
gen_image_tab = gr.Interface(
|
| 557 |
+
fn=generate_image,
|
| 558 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 559 |
+
outputs=gr.Image(type="pil"),
|
| 560 |
+
title="Generate Image",
|
| 561 |
+
)
|
| 562 |
+
edit_image_tab = gr.Interface(
|
| 563 |
+
fn=edit_image_with_prompt,
|
| 564 |
+
inputs=[
|
| 565 |
+
gr.Image(type="pil", label="Image:"),
|
| 566 |
+
gr.Textbox(label="Prompt:"),
|
| 567 |
+
gr.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:"),
|
| 568 |
+
],
|
| 569 |
+
outputs=gr.Image(type="pil"),
|
| 570 |
+
title="Edit Image",
|
| 571 |
+
)
|
| 572 |
+
generate_song_tab = gr.Interface(
|
| 573 |
+
fn=generate_song,
|
| 574 |
+
inputs=[
|
| 575 |
+
gr.Textbox(label="Prompt:"),
|
| 576 |
+
gr.Slider(5, 60, 10, step=1, label="Duration (s):"),
|
| 577 |
+
],
|
| 578 |
+
outputs=gr.Audio(type="numpy"),
|
| 579 |
+
title="Generate Songs",
|
| 580 |
+
)
|
| 581 |
+
generate_text_tab = gr.Interface(
|
| 582 |
+
fn=generate_text,
|
| 583 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 584 |
+
outputs=gr.Textbox(label="Generated Text:"),
|
| 585 |
+
title="Generate Text",
|
| 586 |
+
)
|
| 587 |
+
generate_flux_image_tab = gr.Interface(
|
| 588 |
+
fn=generate_flux_image,
|
| 589 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 590 |
+
outputs=gr.Image(type="pil"),
|
| 591 |
+
title="Generate FLUX Images",
|
| 592 |
+
)
|
| 593 |
+
generate_code_tab = gr.Interface(
|
| 594 |
+
fn=generate_code,
|
| 595 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 596 |
+
outputs=gr.Textbox(label="Generated Code:"),
|
| 597 |
+
title="Generate Code",
|
| 598 |
+
)
|
| 599 |
+
model_meta_llama_test_tab = gr.Interface(
|
| 600 |
+
fn=test_model_meta_llama,
|
| 601 |
+
inputs=None,
|
| 602 |
+
outputs=gr.Textbox(label="Model Output:"),
|
| 603 |
+
title="Test Meta-Llama",
|
| 604 |
+
)
|
| 605 |
+
generate_image_sdxl_tab = gr.Interface(
|
| 606 |
+
fn=generate_image_sdxl,
|
| 607 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 608 |
+
outputs=gr.Image(type="pil"),
|
| 609 |
+
title="Generate SDXL Image",
|
| 610 |
+
)
|
| 611 |
+
generate_musicgen_melody_tab = gr.Interface(
|
| 612 |
+
fn=generate_musicgen_melody,
|
| 613 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 614 |
+
outputs=gr.Audio(type="numpy"),
|
| 615 |
+
title="Generate MusicGen Melody",
|
| 616 |
+
)
|
| 617 |
+
generate_musicgen_large_tab = gr.Interface(
|
| 618 |
+
fn=generate_musicgen_large,
|
| 619 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 620 |
+
outputs=gr.Audio(type="numpy"),
|
| 621 |
+
title="Generate MusicGen Large",
|
| 622 |
+
)
|
| 623 |
+
transcribe_audio_tab = gr.Interface(
|
| 624 |
+
fn=transcribe_audio,
|
| 625 |
+
inputs=gr.Audio(type="numpy", label="Audio Sample:"),
|
| 626 |
+
outputs=gr.Textbox(label="Transcribed Text:"),
|
| 627 |
+
title="Transcribe Audio",
|
| 628 |
+
)
|
| 629 |
+
generate_mistral_instruct_tab = gr.Interface(
|
| 630 |
+
fn=generate_mistral_instruct,
|
| 631 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 632 |
+
outputs=gr.Textbox(label="Mistral Instruct Response:"),
|
| 633 |
+
title="Generate Mistral Instruct Response",
|
| 634 |
+
)
|
| 635 |
+
generate_mistral_nemo_tab = gr.Interface(
|
| 636 |
+
fn=generate_mistral_nemo,
|
| 637 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 638 |
+
outputs=gr.Textbox(label="Mistral Nemo Response:"),
|
| 639 |
+
title="Generate Mistral Nemo Response",
|
| 640 |
+
)
|
| 641 |
+
generate_gpt2_xl_tab = gr.Interface(
|
| 642 |
+
fn=generate_gpt2_xl,
|
| 643 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 644 |
+
outputs=gr.Textbox(label="GPT-2 XL Response:"),
|
| 645 |
+
title="Generate GPT-2 XL Response",
|
| 646 |
+
)
|
| 647 |
+
answer_question_minicpm_tab = gr.Interface(
|
| 648 |
+
fn=answer_question_minicpm,
|
| 649 |
+
inputs=[
|
| 650 |
+
gr.Image(type="pil", label="Image:"),
|
| 651 |
+
gr.Textbox(label="Question:"),
|
| 652 |
+
],
|
| 653 |
+
outputs=gr.Textbox(label="MiniCPM Answer:"),
|
| 654 |
+
title="Answer Question with MiniCPM",
|
| 655 |
+
)
|
| 656 |
+
llama_3_groq_70b_tool_use_tab = gr.Interface(
|
| 657 |
+
fn=llama_3_groq_70b_tool_use_pipeline,
|
| 658 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 659 |
+
outputs=gr.Textbox(label="Llama 3 Groq 70B Tool Use Response:"),
|
| 660 |
+
title="Llama 3 Groq 70B Tool Use",
|
| 661 |
+
)
|
| 662 |
+
phi_3_5_mini_instruct_tab = gr.Interface(
|
| 663 |
+
fn=phi_3_5_mini_instruct_pipeline,
|
| 664 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 665 |
+
outputs=gr.Textbox(label="Phi 3.5 Mini Instruct Response:"),
|
| 666 |
+
title="Phi 3.5 Mini Instruct",
|
| 667 |
+
)
|
| 668 |
+
meta_llama_3_1_8b_tab = gr.Interface(
|
| 669 |
+
fn=meta_llama_3_1_8b_pipeline,
|
| 670 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 671 |
+
outputs=gr.Textbox(label="Meta Llama 3.1 8B Response:"),
|
| 672 |
+
title="Meta Llama 3.1 8B",
|
| 673 |
+
)
|
| 674 |
+
meta_llama_3_1_70b_tab = gr.Interface(
|
| 675 |
+
fn=meta_llama_3_1_70b_pipeline,
|
| 676 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 677 |
+
outputs=gr.Textbox(label="Meta Llama 3.1 70B Response:"),
|
| 678 |
+
title="Meta Llama 3.1 70B",
|
| 679 |
+
)
|
| 680 |
+
medical_text_summarization_tab = gr.Interface(
|
| 681 |
+
fn=medical_text_summarization_pipeline,
|
| 682 |
+
inputs=[gr.Textbox(label="Medical Document:")],
|
| 683 |
+
outputs=gr.Textbox(label="Medical Text Summarization:"),
|
| 684 |
+
title="Medical Text Summarization",
|
| 685 |
+
)
|
| 686 |
+
bart_large_cnn_summarization_tab = gr.Interface(
|
| 687 |
+
fn=bart_large_cnn_summarization_pipeline,
|
| 688 |
+
inputs=[gr.Textbox(label="Article:")],
|
| 689 |
+
outputs=gr.Textbox(label="Bart Large CNN Summarization:"),
|
| 690 |
+
title="Bart Large CNN Summarization",
|
| 691 |
+
)
|
| 692 |
+
flux_1_dev_tab = gr.Interface(
|
| 693 |
+
fn=flux_1_dev_pipeline,
|
| 694 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 695 |
+
outputs=gr.Image(type="pil"),
|
| 696 |
+
title="FLUX 1 Dev",
|
| 697 |
+
)
|
| 698 |
+
gemma_2_9b_tab = gr.Interface(
|
| 699 |
+
fn=gemma_2_9b_pipeline,
|
| 700 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 701 |
+
outputs=gr.Textbox(label="Gemma 2 9B Response:"),
|
| 702 |
+
title="Gemma 2 9B",
|
| 703 |
+
)
|
| 704 |
+
gemma_2_9b_it_tab = gr.Interface(
|
| 705 |
+
fn=gemma_2_9b_it_pipeline,
|
| 706 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 707 |
+
outputs=gr.Textbox(label="Gemma 2 9B IT Response:"),
|
| 708 |
+
title="Gemma 2 9B IT",
|
| 709 |
+
)
|
| 710 |
+
gemma_2_2b_tab = gr.Interface(
|
| 711 |
+
fn=gemma_2_2b_pipeline,
|
| 712 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 713 |
+
outputs=gr.Textbox(label="Gemma 2 2B Response:"),
|
| 714 |
+
title="Gemma 2 2B",
|
| 715 |
+
)
|
| 716 |
+
gemma_2_2b_it_tab = gr.Interface(
|
| 717 |
+
fn=gemma_2_2b_it_pipeline,
|
| 718 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 719 |
+
outputs=gr.Textbox(label="Gemma 2 2B IT Response:"),
|
| 720 |
+
title="Gemma 2 2B IT",
|
| 721 |
+
)
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
def generate_gemma_2_27b(prompt):
|
| 725 |
+
input_ids = gemma_2_27b_tokenizer(prompt, return_tensors="pt")
|
| 726 |
+
outputs = gemma_2_27b_model.generate(**input_ids, max_new_tokens=32)
|
| 727 |
+
return gemma_2_27b_tokenizer.decode(outputs[0])
|
| 728 |
+
|
| 729 |
+
|
| 730 |
+
gemma_2_27b_tab = gr.Interface(
|
| 731 |
+
fn=generate_gemma_2_27b,
|
| 732 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 733 |
+
outputs=gr.Textbox(label="Gemma 2 27B Response:"),
|
| 734 |
+
title="Gemma 2 27B",
|
| 735 |
+
)
|
| 736 |
+
gemma_2_27b_it_tab = gr.Interface(
|
| 737 |
+
fn=gemma_2_27b_it_pipeline,
|
| 738 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 739 |
+
outputs=gr.Textbox(label="Gemma 2 27B IT Response:"),
|
| 740 |
+
title="Gemma 2 27B IT",
|
| 741 |
+
)
|
| 742 |
+
text_to_video_ms_1_7b_tab = gr.Interface(
|
| 743 |
+
fn=generate_text_to_video_ms_1_7b,
|
| 744 |
+
inputs=[
|
| 745 |
+
gr.Textbox(label="Prompt:"),
|
| 746 |
+
gr.Slider(50, 200, 200, step=1, label="Number of Frames:"),
|
| 747 |
+
],
|
| 748 |
+
outputs=gr.Video(),
|
| 749 |
+
title="Text to Video MS 1.7B",
|
| 750 |
+
)
|
| 751 |
+
text_to_video_ms_1_7b_short_tab = gr.Interface(
|
| 752 |
+
fn=generate_text_to_video_ms_1_7b_short,
|
| 753 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
| 754 |
+
outputs=gr.Video(),
|
| 755 |
+
title="Text to Video MS 1.7B Short",
|
| 756 |
+
)
|
| 757 |
+
|
| 758 |
+
app = gr.TabbedInterface(
|
| 759 |
+
[
|
| 760 |
+
gen_image_tab,
|
| 761 |
+
edit_image_tab,
|
| 762 |
+
generate_song_tab,
|
| 763 |
+
generate_text_tab,
|
| 764 |
+
generate_flux_image_tab,
|
| 765 |
+
generate_code_tab,
|
| 766 |
+
model_meta_llama_test_tab,
|
| 767 |
+
generate_image_sdxl_tab,
|
| 768 |
+
generate_musicgen_melody_tab,
|
| 769 |
+
generate_musicgen_large_tab,
|
| 770 |
+
transcribe_audio_tab,
|
| 771 |
+
generate_mistral_instruct_tab,
|
| 772 |
+
generate_mistral_nemo_tab,
|
| 773 |
+
generate_gpt2_xl_tab,
|
| 774 |
+
llama_3_groq_70b_tool_use_tab,
|
| 775 |
+
phi_3_5_mini_instruct_tab,
|
| 776 |
+
meta_llama_3_1_8b_tab,
|
| 777 |
+
meta_llama_3_1_70b_tab,
|
| 778 |
+
medical_text_summarization_tab,
|
| 779 |
+
bart_large_cnn_summarization_tab,
|
| 780 |
+
flux_1_dev_tab,
|
| 781 |
+
gemma_2_9b_tab,
|
| 782 |
+
gemma_2_9b_it_tab,
|
| 783 |
+
gemma_2_2b_tab,
|
| 784 |
+
gemma_2_2b_it_tab,
|
| 785 |
+
gemma_2_27b_tab,
|
| 786 |
+
gemma_2_27b_it_tab,
|
| 787 |
+
text_to_video_ms_1_7b_tab,
|
| 788 |
+
text_to_video_ms_1_7b_short_tab,
|
| 789 |
+
],
|
| 790 |
+
[
|
| 791 |
+
"Generate Image",
|
| 792 |
+
"Edit Image",
|
| 793 |
+
"Generate Song",
|
| 794 |
+
"Generate Text",
|
| 795 |
+
"Generate FLUX Image",
|
| 796 |
+
"Generate Code",
|
| 797 |
+
"Test Meta-Llama",
|
| 798 |
+
"Generate SDXL Image",
|
| 799 |
+
"Generate MusicGen Melody",
|
| 800 |
+
"Generate MusicGen Large",
|
| 801 |
+
"Transcribe Audio",
|
| 802 |
+
"Generate Mistral Instruct Response",
|
| 803 |
+
"Generate Mistral Nemo Response",
|
| 804 |
+
"Generate GPT-2 XL Response",
|
| 805 |
+
"Llama 3 Groq 70B Tool Use",
|
| 806 |
+
"Phi 3.5 Mini Instruct",
|
| 807 |
+
"Meta Llama 3.1 8B",
|
| 808 |
+
"Meta Llama 3.1 70B",
|
| 809 |
+
"Medical Text Summarization",
|
| 810 |
+
"Bart Large CNN Summarization",
|
| 811 |
+
"FLUX 1 Dev",
|
| 812 |
+
"Gemma 2 9B",
|
| 813 |
+
"Gemma 2 9B IT",
|
| 814 |
+
"Gemma 2 2B",
|
| 815 |
+
"Gemma 2 2B IT",
|
| 816 |
+
"Gemma 2 27B",
|
| 817 |
+
"Gemma 2 27B IT",
|
| 818 |
+
"Text to Video MS 1.7B",
|
| 819 |
+
"Text to Video MS 1.7B Short",
|
| 820 |
+
],
|
| 821 |
+
)
|
| 822 |
+
|
| 823 |
+
app.launch(share=True)
|