Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,9 +3,21 @@ import redis
|
|
| 3 |
import pickle
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from diffusers.utils import export_to_video
|
| 8 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from audiocraft.models import musicgen
|
| 10 |
import gradio as gr
|
| 11 |
from huggingface_hub import snapshot_download, HfApi, HfFolder
|
|
@@ -27,24 +39,37 @@ HfFolder.save_token(hf_token)
|
|
| 27 |
|
| 28 |
storage_client = storage.Client.from_service_account_info(gcs_credentials)
|
| 29 |
|
|
|
|
| 30 |
def connect_to_redis():
|
| 31 |
while True:
|
| 32 |
try:
|
| 33 |
-
redis_client = redis.Redis(
|
|
|
|
|
|
|
| 34 |
redis_client.ping()
|
| 35 |
return redis_client
|
| 36 |
-
except (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
print(f"Connection to Redis failed: {e}. Retrying in 1 second...")
|
| 38 |
time.sleep(1)
|
| 39 |
|
|
|
|
| 40 |
def reconnect_if_needed(redis_client):
|
| 41 |
try:
|
| 42 |
redis_client.ping()
|
| 43 |
-
except (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
print("Reconnecting to Redis...")
|
| 45 |
return connect_to_redis()
|
| 46 |
return redis_client
|
| 47 |
|
|
|
|
| 48 |
def load_object_from_redis(key):
|
| 49 |
redis_client = connect_to_redis()
|
| 50 |
redis_client = reconnect_if_needed(redis_client)
|
|
@@ -55,6 +80,7 @@ def load_object_from_redis(key):
|
|
| 55 |
print(f"Failed to load object from Redis: {e}")
|
| 56 |
return None
|
| 57 |
|
|
|
|
| 58 |
def save_object_to_redis(key, obj):
|
| 59 |
redis_client = connect_to_redis()
|
| 60 |
redis_client = reconnect_if_needed(redis_client)
|
|
@@ -63,16 +89,19 @@ def save_object_to_redis(key, obj):
|
|
| 63 |
except redis.exceptions.RedisError as e:
|
| 64 |
print(f"Failed to save object to Redis: {e}")
|
| 65 |
|
|
|
|
| 66 |
def upload_to_gcs(bucket_name, blob_name, data):
|
| 67 |
bucket = storage_client.bucket(bucket_name)
|
| 68 |
blob = bucket.blob(blob_name)
|
| 69 |
blob.upload_from_string(data)
|
| 70 |
|
|
|
|
| 71 |
def download_from_gcs(bucket_name, blob_name):
|
| 72 |
bucket = storage_client.bucket(bucket_name)
|
| 73 |
blob = bucket.blob(blob_name)
|
| 74 |
return blob.download_as_bytes()
|
| 75 |
|
|
|
|
| 76 |
def get_model_or_download(model_id, redis_key, loader_func):
|
| 77 |
model = load_object_from_redis(redis_key)
|
| 78 |
if model:
|
|
@@ -89,6 +118,7 @@ def get_model_or_download(model_id, redis_key, loader_func):
|
|
| 89 |
print(f"Failed to load or save model: {e}")
|
| 90 |
return None
|
| 91 |
|
|
|
|
| 92 |
def generate_image(prompt):
|
| 93 |
redis_key = f"generated_image:{prompt}"
|
| 94 |
image_bytes = load_object_from_redis(redis_key)
|
|
@@ -107,6 +137,7 @@ def generate_image(prompt):
|
|
| 107 |
return None
|
| 108 |
return image_bytes
|
| 109 |
|
|
|
|
| 110 |
def edit_image_with_prompt(image_bytes, prompt, strength=0.75):
|
| 111 |
redis_key = f"edited_image:{prompt}:{strength}"
|
| 112 |
edited_image_bytes = load_object_from_redis(redis_key)
|
|
@@ -114,7 +145,9 @@ def edit_image_with_prompt(image_bytes, prompt, strength=0.75):
|
|
| 114 |
try:
|
| 115 |
image = Image.open(io.BytesIO(image_bytes))
|
| 116 |
with tqdm(total=1, desc="Editing image") as pbar:
|
| 117 |
-
edited_image = img2img_pipeline(
|
|
|
|
|
|
|
| 118 |
pbar.update(1)
|
| 119 |
buffered = io.BytesIO()
|
| 120 |
edited_image.save(buffered, format="JPEG")
|
|
@@ -126,6 +159,7 @@ def edit_image_with_prompt(image_bytes, prompt, strength=0.75):
|
|
| 126 |
return None
|
| 127 |
return edited_image_bytes
|
| 128 |
|
|
|
|
| 129 |
def generate_song(prompt, duration=10):
|
| 130 |
redis_key = f"generated_song:{prompt}:{duration}"
|
| 131 |
song_bytes = load_object_from_redis(redis_key)
|
|
@@ -142,13 +176,16 @@ def generate_song(prompt, duration=10):
|
|
| 142 |
return None
|
| 143 |
return song_bytes
|
| 144 |
|
|
|
|
| 145 |
def generate_text(prompt):
|
| 146 |
redis_key = f"generated_text:{prompt}"
|
| 147 |
text = load_object_from_redis(redis_key)
|
| 148 |
if not text:
|
| 149 |
try:
|
| 150 |
with tqdm(total=1, desc="Generating text") as pbar:
|
| 151 |
-
text = text_gen_pipeline(prompt, max_new_tokens=256)[0][
|
|
|
|
|
|
|
| 152 |
pbar.update(1)
|
| 153 |
save_object_to_redis(redis_key, text)
|
| 154 |
upload_to_gcs(gcs_bucket_name, redis_key, text.encode())
|
|
@@ -157,6 +194,7 @@ def generate_text(prompt):
|
|
| 157 |
return None
|
| 158 |
return text
|
| 159 |
|
|
|
|
| 160 |
def generate_flux_image(prompt):
|
| 161 |
redis_key = f"generated_flux_image:{prompt}"
|
| 162 |
flux_image_bytes = load_object_from_redis(redis_key)
|
|
@@ -168,7 +206,7 @@ def generate_flux_image(prompt):
|
|
| 168 |
guidance_scale=0.0,
|
| 169 |
num_inference_steps=4,
|
| 170 |
max_length=256,
|
| 171 |
-
generator=torch.Generator("cpu").manual_seed(0)
|
| 172 |
).images[0]
|
| 173 |
pbar.update(1)
|
| 174 |
buffered = io.BytesIO()
|
|
@@ -181,13 +219,16 @@ def generate_flux_image(prompt):
|
|
| 181 |
return None
|
| 182 |
return flux_image_bytes
|
| 183 |
|
|
|
|
| 184 |
def generate_code(prompt):
|
| 185 |
redis_key = f"generated_code:{prompt}"
|
| 186 |
code = load_object_from_redis(redis_key)
|
| 187 |
if not code:
|
| 188 |
try:
|
| 189 |
with tqdm(total=1, desc="Generating code") as pbar:
|
| 190 |
-
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt").to(
|
|
|
|
|
|
|
| 191 |
outputs = starcoder_model.generate(inputs, max_new_tokens=256)
|
| 192 |
code = starcoder_tokenizer.decode(outputs[0])
|
| 193 |
pbar.update(1)
|
|
@@ -198,17 +239,23 @@ def generate_code(prompt):
|
|
| 198 |
return None
|
| 199 |
return code
|
| 200 |
|
|
|
|
| 201 |
def test_model_meta_llama():
|
| 202 |
redis_key = "meta_llama_test_response"
|
| 203 |
response = load_object_from_redis(redis_key)
|
| 204 |
if not response:
|
| 205 |
try:
|
| 206 |
messages = [
|
| 207 |
-
{
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
| 209 |
]
|
| 210 |
with tqdm(total=1, desc="Testing Meta-Llama") as pbar:
|
| 211 |
-
response = meta_llama_pipeline(messages, max_new_tokens=256)[0][
|
|
|
|
|
|
|
| 212 |
pbar.update(1)
|
| 213 |
save_object_to_redis(redis_key, response)
|
| 214 |
upload_to_gcs(gcs_bucket_name, redis_key, response.encode())
|
|
@@ -217,28 +264,402 @@ def test_model_meta_llama():
|
|
| 217 |
return None
|
| 218 |
return response
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 221 |
|
| 222 |
-
text_to_image_pipeline = get_model_or_download(
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
starcoder_tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder")
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
app = gr.TabbedInterface(
|
| 240 |
-
[
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
)
|
| 243 |
|
| 244 |
app.launch(share=True)
|
|
|
|
| 3 |
import pickle
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
+
from diffusers import (
|
| 7 |
+
StableDiffusionPipeline,
|
| 8 |
+
StableDiffusionImg2ImgPipeline,
|
| 9 |
+
FluxPipeline,
|
| 10 |
+
DiffusionPipeline,
|
| 11 |
+
DPMSolverMultistepScheduler,
|
| 12 |
+
)
|
| 13 |
from diffusers.utils import export_to_video
|
| 14 |
+
from transformers import (
|
| 15 |
+
pipeline as transformers_pipeline,
|
| 16 |
+
AutoModelForCausalLM,
|
| 17 |
+
AutoTokenizer,
|
| 18 |
+
GPT2Tokenizer,
|
| 19 |
+
GPT2Model,
|
| 20 |
+
)
|
| 21 |
from audiocraft.models import musicgen
|
| 22 |
import gradio as gr
|
| 23 |
from huggingface_hub import snapshot_download, HfApi, HfFolder
|
|
|
|
| 39 |
|
| 40 |
storage_client = storage.Client.from_service_account_info(gcs_credentials)
|
| 41 |
|
| 42 |
+
|
| 43 |
def connect_to_redis():
|
| 44 |
while True:
|
| 45 |
try:
|
| 46 |
+
redis_client = redis.Redis(
|
| 47 |
+
host=redis_host, port=redis_port, password=redis_password
|
| 48 |
+
)
|
| 49 |
redis_client.ping()
|
| 50 |
return redis_client
|
| 51 |
+
except (
|
| 52 |
+
redis.exceptions.ConnectionError,
|
| 53 |
+
redis.exceptions.TimeoutError,
|
| 54 |
+
BrokenPipeError,
|
| 55 |
+
) as e:
|
| 56 |
print(f"Connection to Redis failed: {e}. Retrying in 1 second...")
|
| 57 |
time.sleep(1)
|
| 58 |
|
| 59 |
+
|
| 60 |
def reconnect_if_needed(redis_client):
|
| 61 |
try:
|
| 62 |
redis_client.ping()
|
| 63 |
+
except (
|
| 64 |
+
redis.exceptions.ConnectionError,
|
| 65 |
+
redis.exceptions.TimeoutError,
|
| 66 |
+
BrokenPipeError,
|
| 67 |
+
):
|
| 68 |
print("Reconnecting to Redis...")
|
| 69 |
return connect_to_redis()
|
| 70 |
return redis_client
|
| 71 |
|
| 72 |
+
|
| 73 |
def load_object_from_redis(key):
|
| 74 |
redis_client = connect_to_redis()
|
| 75 |
redis_client = reconnect_if_needed(redis_client)
|
|
|
|
| 80 |
print(f"Failed to load object from Redis: {e}")
|
| 81 |
return None
|
| 82 |
|
| 83 |
+
|
| 84 |
def save_object_to_redis(key, obj):
|
| 85 |
redis_client = connect_to_redis()
|
| 86 |
redis_client = reconnect_if_needed(redis_client)
|
|
|
|
| 89 |
except redis.exceptions.RedisError as e:
|
| 90 |
print(f"Failed to save object to Redis: {e}")
|
| 91 |
|
| 92 |
+
|
| 93 |
def upload_to_gcs(bucket_name, blob_name, data):
|
| 94 |
bucket = storage_client.bucket(bucket_name)
|
| 95 |
blob = bucket.blob(blob_name)
|
| 96 |
blob.upload_from_string(data)
|
| 97 |
|
| 98 |
+
|
| 99 |
def download_from_gcs(bucket_name, blob_name):
|
| 100 |
bucket = storage_client.bucket(bucket_name)
|
| 101 |
blob = bucket.blob(blob_name)
|
| 102 |
return blob.download_as_bytes()
|
| 103 |
|
| 104 |
+
|
| 105 |
def get_model_or_download(model_id, redis_key, loader_func):
|
| 106 |
model = load_object_from_redis(redis_key)
|
| 107 |
if model:
|
|
|
|
| 118 |
print(f"Failed to load or save model: {e}")
|
| 119 |
return None
|
| 120 |
|
| 121 |
+
|
| 122 |
def generate_image(prompt):
|
| 123 |
redis_key = f"generated_image:{prompt}"
|
| 124 |
image_bytes = load_object_from_redis(redis_key)
|
|
|
|
| 137 |
return None
|
| 138 |
return image_bytes
|
| 139 |
|
| 140 |
+
|
| 141 |
def edit_image_with_prompt(image_bytes, prompt, strength=0.75):
|
| 142 |
redis_key = f"edited_image:{prompt}:{strength}"
|
| 143 |
edited_image_bytes = load_object_from_redis(redis_key)
|
|
|
|
| 145 |
try:
|
| 146 |
image = Image.open(io.BytesIO(image_bytes))
|
| 147 |
with tqdm(total=1, desc="Editing image") as pbar:
|
| 148 |
+
edited_image = img2img_pipeline(
|
| 149 |
+
prompt=prompt, image=image, strength=strength
|
| 150 |
+
).images[0]
|
| 151 |
pbar.update(1)
|
| 152 |
buffered = io.BytesIO()
|
| 153 |
edited_image.save(buffered, format="JPEG")
|
|
|
|
| 159 |
return None
|
| 160 |
return edited_image_bytes
|
| 161 |
|
| 162 |
+
|
| 163 |
def generate_song(prompt, duration=10):
|
| 164 |
redis_key = f"generated_song:{prompt}:{duration}"
|
| 165 |
song_bytes = load_object_from_redis(redis_key)
|
|
|
|
| 176 |
return None
|
| 177 |
return song_bytes
|
| 178 |
|
| 179 |
+
|
| 180 |
def generate_text(prompt):
|
| 181 |
redis_key = f"generated_text:{prompt}"
|
| 182 |
text = load_object_from_redis(redis_key)
|
| 183 |
if not text:
|
| 184 |
try:
|
| 185 |
with tqdm(total=1, desc="Generating text") as pbar:
|
| 186 |
+
text = text_gen_pipeline(prompt, max_new_tokens=256)[0][
|
| 187 |
+
"generated_text"
|
| 188 |
+
].strip()
|
| 189 |
pbar.update(1)
|
| 190 |
save_object_to_redis(redis_key, text)
|
| 191 |
upload_to_gcs(gcs_bucket_name, redis_key, text.encode())
|
|
|
|
| 194 |
return None
|
| 195 |
return text
|
| 196 |
|
| 197 |
+
|
| 198 |
def generate_flux_image(prompt):
|
| 199 |
redis_key = f"generated_flux_image:{prompt}"
|
| 200 |
flux_image_bytes = load_object_from_redis(redis_key)
|
|
|
|
| 206 |
guidance_scale=0.0,
|
| 207 |
num_inference_steps=4,
|
| 208 |
max_length=256,
|
| 209 |
+
generator=torch.Generator("cpu").manual_seed(0),
|
| 210 |
).images[0]
|
| 211 |
pbar.update(1)
|
| 212 |
buffered = io.BytesIO()
|
|
|
|
| 219 |
return None
|
| 220 |
return flux_image_bytes
|
| 221 |
|
| 222 |
+
|
| 223 |
def generate_code(prompt):
|
| 224 |
redis_key = f"generated_code:{prompt}"
|
| 225 |
code = load_object_from_redis(redis_key)
|
| 226 |
if not code:
|
| 227 |
try:
|
| 228 |
with tqdm(total=1, desc="Generating code") as pbar:
|
| 229 |
+
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt").to(
|
| 230 |
+
starcoder_model.device
|
| 231 |
+
)
|
| 232 |
outputs = starcoder_model.generate(inputs, max_new_tokens=256)
|
| 233 |
code = starcoder_tokenizer.decode(outputs[0])
|
| 234 |
pbar.update(1)
|
|
|
|
| 239 |
return None
|
| 240 |
return code
|
| 241 |
|
| 242 |
+
|
| 243 |
def test_model_meta_llama():
|
| 244 |
redis_key = "meta_llama_test_response"
|
| 245 |
response = load_object_from_redis(redis_key)
|
| 246 |
if not response:
|
| 247 |
try:
|
| 248 |
messages = [
|
| 249 |
+
{
|
| 250 |
+
"role": "system",
|
| 251 |
+
"content": "You are a pirate chatbot who always responds in pirate speak!",
|
| 252 |
+
},
|
| 253 |
+
{"role": "user", "content": "Who are you?"},
|
| 254 |
]
|
| 255 |
with tqdm(total=1, desc="Testing Meta-Llama") as pbar:
|
| 256 |
+
response = meta_llama_pipeline(messages, max_new_tokens=256)[0][
|
| 257 |
+
"generated_text"
|
| 258 |
+
].strip()
|
| 259 |
pbar.update(1)
|
| 260 |
save_object_to_redis(redis_key, response)
|
| 261 |
upload_to_gcs(gcs_bucket_name, redis_key, response.encode())
|
|
|
|
| 264 |
return None
|
| 265 |
return response
|
| 266 |
|
| 267 |
+
|
| 268 |
+
def generate_image_sdxl(prompt):
|
| 269 |
+
redis_key = f"generated_image_sdxl:{prompt}"
|
| 270 |
+
image_bytes = load_object_from_redis(redis_key)
|
| 271 |
+
if not image_bytes:
|
| 272 |
+
try:
|
| 273 |
+
with tqdm(total=1, desc="Generating SDXL image") as pbar:
|
| 274 |
+
image = base(
|
| 275 |
+
prompt=prompt,
|
| 276 |
+
num_inference_steps=40,
|
| 277 |
+
denoising_end=0.8,
|
| 278 |
+
output_type="latent",
|
| 279 |
+
).images
|
| 280 |
+
image = refiner(
|
| 281 |
+
prompt=prompt,
|
| 282 |
+
num_inference_steps=40,
|
| 283 |
+
denoising_start=0.8,
|
| 284 |
+
image=image,
|
| 285 |
+
).images[0]
|
| 286 |
+
pbar.update(1)
|
| 287 |
+
buffered = io.BytesIO()
|
| 288 |
+
image.save(buffered, format="JPEG")
|
| 289 |
+
image_bytes = buffered.getvalue()
|
| 290 |
+
save_object_to_redis(redis_key, image_bytes)
|
| 291 |
+
upload_to_gcs(gcs_bucket_name, redis_key, image_bytes)
|
| 292 |
+
except Exception as e:
|
| 293 |
+
print(f"Failed to generate SDXL image: {e}")
|
| 294 |
+
return None
|
| 295 |
+
return image_bytes
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def generate_musicgen_melody(prompt):
|
| 299 |
+
redis_key = f"generated_musicgen_melody:{prompt}"
|
| 300 |
+
song_bytes = load_object_from_redis(redis_key)
|
| 301 |
+
if not song_bytes:
|
| 302 |
+
try:
|
| 303 |
+
with tqdm(total=1, desc="Generating MusicGen melody") as pbar:
|
| 304 |
+
melody, sr = torchaudio.load("./assets/bach.mp3")
|
| 305 |
+
wav = music_gen_melody.generate_with_chroma(
|
| 306 |
+
[prompt], melody[None].expand(3, -1, -1), sr
|
| 307 |
+
)
|
| 308 |
+
pbar.update(1)
|
| 309 |
+
song_bytes = wav[0].getvalue()
|
| 310 |
+
save_object_to_redis(redis_key, song_bytes)
|
| 311 |
+
upload_to_gcs(gcs_bucket_name, redis_key, song_bytes)
|
| 312 |
+
except Exception as e:
|
| 313 |
+
print(f"Failed to generate MusicGen melody: {e}")
|
| 314 |
+
return None
|
| 315 |
+
return song_bytes
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def generate_musicgen_large(prompt):
|
| 319 |
+
redis_key = f"generated_musicgen_large:{prompt}"
|
| 320 |
+
song_bytes = load_object_from_redis(redis_key)
|
| 321 |
+
if not song_bytes:
|
| 322 |
+
try:
|
| 323 |
+
with tqdm(total=1, desc="Generating MusicGen large") as pbar:
|
| 324 |
+
wav = music_gen_large.generate([prompt])
|
| 325 |
+
pbar.update(1)
|
| 326 |
+
song_bytes = wav[0].getvalue()
|
| 327 |
+
save_object_to_redis(redis_key, song_bytes)
|
| 328 |
+
upload_to_gcs(gcs_bucket_name, redis_key, song_bytes)
|
| 329 |
+
except Exception as e:
|
| 330 |
+
print(f"Failed to generate MusicGen large: {e}")
|
| 331 |
+
return None
|
| 332 |
+
return song_bytes
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def transcribe_audio(audio_sample):
|
| 336 |
+
redis_key = f"transcribed_audio:{hash(audio_sample.tobytes())}"
|
| 337 |
+
text = load_object_from_redis(redis_key)
|
| 338 |
+
if not text:
|
| 339 |
+
try:
|
| 340 |
+
with tqdm(total=1, desc="Transcribing audio") as pbar:
|
| 341 |
+
text = whisper_pipeline(audio_sample.copy(), batch_size=8)["text"]
|
| 342 |
+
pbar.update(1)
|
| 343 |
+
save_object_to_redis(redis_key, text)
|
| 344 |
+
upload_to_gcs(gcs_bucket_name, redis_key, text.encode())
|
| 345 |
+
except Exception as e:
|
| 346 |
+
print(f"Failed to transcribe audio: {e}")
|
| 347 |
+
return None
|
| 348 |
+
return text
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def generate_mistral_instruct(prompt):
|
| 352 |
+
redis_key = f"generated_mistral_instruct:{prompt}"
|
| 353 |
+
response = load_object_from_redis(redis_key)
|
| 354 |
+
if not response:
|
| 355 |
+
try:
|
| 356 |
+
conversation = [{"role": "user", "content": prompt}]
|
| 357 |
+
with tqdm(total=1, desc="Generating Mistral Instruct response") as pbar:
|
| 358 |
+
inputs = mistral_instruct_tokenizer.apply_chat_template(
|
| 359 |
+
conversation,
|
| 360 |
+
tools=tools,
|
| 361 |
+
add_generation_prompt=True,
|
| 362 |
+
return_dict=True,
|
| 363 |
+
return_tensors="pt",
|
| 364 |
+
)
|
| 365 |
+
inputs.to(mistral_instruct_model.device)
|
| 366 |
+
outputs = mistral_instruct_model.generate(
|
| 367 |
+
**inputs, max_new_tokens=1000
|
| 368 |
+
)
|
| 369 |
+
response = mistral_instruct_tokenizer.decode(
|
| 370 |
+
outputs[0], skip_special_tokens=True
|
| 371 |
+
)
|
| 372 |
+
pbar.update(1)
|
| 373 |
+
save_object_to_redis(redis_key, response)
|
| 374 |
+
upload_to_gcs(gcs_bucket_name, redis_key, response.encode())
|
| 375 |
+
except Exception as e:
|
| 376 |
+
print(f"Failed to generate Mistral Instruct response: {e}")
|
| 377 |
+
return None
|
| 378 |
+
return response
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def generate_mistral_nemo(prompt):
|
| 382 |
+
redis_key = f"generated_mistral_nemo:{prompt}"
|
| 383 |
+
response = load_object_from_redis(redis_key)
|
| 384 |
+
if not response:
|
| 385 |
+
try:
|
| 386 |
+
conversation = [{"role": "user", "content": prompt}]
|
| 387 |
+
with tqdm(total=1, desc="Generating Mistral Nemo response") as pbar:
|
| 388 |
+
inputs = mistral_nemo_tokenizer.apply_chat_template(
|
| 389 |
+
conversation,
|
| 390 |
+
tools=tools,
|
| 391 |
+
add_generation_prompt=True,
|
| 392 |
+
return_dict=True,
|
| 393 |
+
return_tensors="pt",
|
| 394 |
+
)
|
| 395 |
+
inputs.to(mistral_nemo_model.device)
|
| 396 |
+
outputs = mistral_nemo_model.generate(**inputs, max_new_tokens=1000)
|
| 397 |
+
response = mistral_nemo_tokenizer.decode(
|
| 398 |
+
outputs[0], skip_special_tokens=True
|
| 399 |
+
)
|
| 400 |
+
pbar.update(1)
|
| 401 |
+
save_object_to_redis(redis_key, response)
|
| 402 |
+
upload_to_gcs(gcs_bucket_name, redis_key, response.encode())
|
| 403 |
+
except Exception as e:
|
| 404 |
+
print(f"Failed to generate Mistral Nemo response: {e}")
|
| 405 |
+
return None
|
| 406 |
+
return response
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
def generate_gpt2_xl(prompt):
|
| 410 |
+
redis_key = f"generated_gpt2_xl:{prompt}"
|
| 411 |
+
response = load_object_from_redis(redis_key)
|
| 412 |
+
if not response:
|
| 413 |
+
try:
|
| 414 |
+
with tqdm(total=1, desc="Generating GPT-2 XL response") as pbar:
|
| 415 |
+
inputs = gpt2_xl_tokenizer(prompt, return_tensors="pt")
|
| 416 |
+
outputs = gpt2_xl_model(**inputs)
|
| 417 |
+
response = gpt2_xl_tokenizer.decode(
|
| 418 |
+
outputs[0][0], skip_special_tokens=True
|
| 419 |
+
)
|
| 420 |
+
pbar.update(1)
|
| 421 |
+
save_object_to_redis(redis_key, response)
|
| 422 |
+
upload_to_gcs(gcs_bucket_name, redis_key, response.encode())
|
| 423 |
+
except Exception as e:
|
| 424 |
+
print(f"Failed to generate GPT-2 XL response: {e}")
|
| 425 |
+
return None
|
| 426 |
+
return response
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
def answer_question_minicpm(image_bytes, question):
|
| 430 |
+
redis_key = f"minicpm_answer:{hash(image_bytes)}:{question}"
|
| 431 |
+
answer = load_object_from_redis(redis_key)
|
| 432 |
+
if not answer:
|
| 433 |
+
try:
|
| 434 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 435 |
+
with tqdm(total=1, desc="Answering question with MiniCPM") as pbar:
|
| 436 |
+
msgs = [{"role": "user", "content": [image, question]}]
|
| 437 |
+
answer = minicpm_model.chat(
|
| 438 |
+
image=None, msgs=msgs, tokenizer=minicpm_tokenizer
|
| 439 |
+
)
|
| 440 |
+
pbar.update(1)
|
| 441 |
+
save_object_to_redis(redis_key, answer)
|
| 442 |
+
upload_to_gcs(gcs_bucket_name, redis_key, answer.encode())
|
| 443 |
+
except Exception as e:
|
| 444 |
+
print(f"Failed to answer question with MiniCPM: {e}")
|
| 445 |
+
return None
|
| 446 |
+
return answer
|
| 447 |
+
|
| 448 |
+
|
| 449 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 450 |
|
| 451 |
+
text_to_image_pipeline = get_model_or_download(
|
| 452 |
+
"stabilityai/stable-diffusion-2", "text_to_image_model", StableDiffusionPipeline.from_pretrained
|
| 453 |
+
)
|
| 454 |
+
img2img_pipeline = get_model_or_download(
|
| 455 |
+
"CompVis/stable-diffusion-v1-4",
|
| 456 |
+
"img2img_model",
|
| 457 |
+
StableDiffusionImg2ImgPipeline.from_pretrained,
|
| 458 |
+
)
|
| 459 |
+
flux_pipeline = get_model_or_download(
|
| 460 |
+
"black-forest-labs/FLUX.1-schnell", "flux_model", FluxPipeline.from_pretrained
|
| 461 |
+
)
|
| 462 |
+
text_gen_pipeline = transformers_pipeline(
|
| 463 |
+
"text-generation", model="google/gemma-2-9b", tokenizer="google/gemma-2-9b"
|
| 464 |
+
)
|
| 465 |
+
music_gen = load_object_from_redis("music_gen") or musicgen.MusicGen.get_pretrained(
|
| 466 |
+
"melody"
|
| 467 |
+
).to(device)
|
| 468 |
+
meta_llama_pipeline = get_model_or_download(
|
| 469 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct", "meta_llama_model", transformers_pipeline
|
| 470 |
+
)
|
| 471 |
+
starcoder_model = AutoModelForCausalLM.from_pretrained(
|
| 472 |
+
"bigcode/starcoder"
|
| 473 |
+
).to(device)
|
| 474 |
starcoder_tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder")
|
| 475 |
|
| 476 |
+
base = DiffusionPipeline.from_pretrained(
|
| 477 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 478 |
+
torch_dtype=torch.float16,
|
| 479 |
+
variant="fp16",
|
| 480 |
+
use_safetensors=True,
|
| 481 |
+
).to(device)
|
| 482 |
+
refiner = DiffusionPipeline.from_pretrained(
|
| 483 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
| 484 |
+
text_encoder_2=base.text_encoder_2,
|
| 485 |
+
vae=base.vae,
|
| 486 |
+
torch_dtype=torch.float16,
|
| 487 |
+
use_safetensors=True,
|
| 488 |
+
variant="fp16",
|
| 489 |
+
).to(device)
|
| 490 |
+
music_gen_melody = musicgen.MusicGen.get_pretrained("melody").to(device)
|
| 491 |
+
music_gen_melody.set_generation_params(duration=8)
|
| 492 |
+
music_gen_large = musicgen.MusicGen.get_pretrained("large").to(device)
|
| 493 |
+
music_gen_large.set_generation_params(duration=8)
|
| 494 |
+
whisper_pipeline = transformers_pipeline(
|
| 495 |
+
"automatic-speech-recognition",
|
| 496 |
+
model="openai/whisper-small",
|
| 497 |
+
chunk_length_s=30,
|
| 498 |
+
device=device,
|
| 499 |
+
)
|
| 500 |
+
mistral_instruct_model = AutoModelForCausalLM.from_pretrained(
|
| 501 |
+
"mistralai/Mistral-Large-Instruct-2407",
|
| 502 |
+
torch_dtype=torch.bfloat16,
|
| 503 |
+
device_map="auto",
|
| 504 |
+
)
|
| 505 |
+
mistral_instruct_tokenizer = AutoTokenizer.from_pretrained(
|
| 506 |
+
"mistralai/Mistral-Large-Instruct-2407"
|
| 507 |
+
)
|
| 508 |
+
mistral_nemo_model = AutoModelForCausalLM.from_pretrained(
|
| 509 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
| 510 |
+
torch_dtype=torch.bfloat16,
|
| 511 |
+
device_map="auto",
|
| 512 |
+
)
|
| 513 |
+
mistral_nemo_tokenizer = AutoTokenizer.from_pretrained(
|
| 514 |
+
"mistralai/Mistral-Nemo-Instruct-2407"
|
| 515 |
+
)
|
| 516 |
+
gpt2_xl_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-xl")
|
| 517 |
+
gpt2_xl_model = GPT2Model.from_pretrained("gpt2-xl")
|
| 518 |
+
minicpm_model = AutoModel.from_pretrained(
|
| 519 |
+
"openbmb/MiniCPM-V-2_6",
|
| 520 |
+
trust_remote_code=True,
|
| 521 |
+
attn_implementation="sdpa",
|
| 522 |
+
torch_dtype=torch.bfloat16,
|
| 523 |
+
).eval().cuda()
|
| 524 |
+
minicpm_tokenizer = AutoTokenizer.from_pretrained(
|
| 525 |
+
"openbmb/MiniCPM-V-2_6", trust_remote_code=True
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
tools = [] # Define any tools needed for Mistral models
|
| 529 |
+
|
| 530 |
+
gen_image_tab = gr.Interface(
|
| 531 |
+
fn=generate_image, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Image(type="pil"), title="Generate Image"
|
| 532 |
+
)
|
| 533 |
+
edit_image_tab = gr.Interface(
|
| 534 |
+
fn=edit_image_with_prompt,
|
| 535 |
+
inputs=[
|
| 536 |
+
gr.Image(type="pil", label="Image:"),
|
| 537 |
+
gr.Textbox(label="Prompt:"),
|
| 538 |
+
gr.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:"),
|
| 539 |
+
],
|
| 540 |
+
outputs=gr.Image(type="pil"),
|
| 541 |
+
title="Edit Image",
|
| 542 |
+
)
|
| 543 |
+
generate_song_tab = gr.Interface(
|
| 544 |
+
fn=generate_song,
|
| 545 |
+
inputs=[
|
| 546 |
+
gr.Textbox(label="Prompt:"),
|
| 547 |
+
gr.Slider(5, 60, 10, step=1, label="Duration (s):"),
|
| 548 |
+
],
|
| 549 |
+
outputs=gr.Audio(type="numpy"),
|
| 550 |
+
title="Generate Songs",
|
| 551 |
+
)
|
| 552 |
+
generate_text_tab = gr.Interface(
|
| 553 |
+
fn=generate_text,
|
| 554 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 555 |
+
outputs=gr.Textbox(label="Generated Text:"),
|
| 556 |
+
title="Generate Text",
|
| 557 |
+
)
|
| 558 |
+
generate_flux_image_tab = gr.Interface(
|
| 559 |
+
fn=generate_flux_image,
|
| 560 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 561 |
+
outputs=gr.Image(type="pil"),
|
| 562 |
+
title="Generate FLUX Images",
|
| 563 |
+
)
|
| 564 |
+
generate_code_tab = gr.Interface(
|
| 565 |
+
fn=generate_code,
|
| 566 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 567 |
+
outputs=gr.Textbox(label="Generated Code:"),
|
| 568 |
+
title="Generate Code",
|
| 569 |
+
)
|
| 570 |
+
model_meta_llama_test_tab = gr.Interface(
|
| 571 |
+
fn=test_model_meta_llama,
|
| 572 |
+
inputs=None,
|
| 573 |
+
outputs=gr.Textbox(label="Model Output:"),
|
| 574 |
+
title="Test Meta-Llama",
|
| 575 |
+
)
|
| 576 |
+
generate_image_sdxl_tab = gr.Interface(
|
| 577 |
+
fn=generate_image_sdxl,
|
| 578 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 579 |
+
outputs=gr.Image(type="pil"),
|
| 580 |
+
title="Generate SDXL Image",
|
| 581 |
+
)
|
| 582 |
+
generate_musicgen_melody_tab = gr.Interface(
|
| 583 |
+
fn=generate_musicgen_melody,
|
| 584 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 585 |
+
outputs=gr.Audio(type="numpy"),
|
| 586 |
+
title="Generate MusicGen Melody",
|
| 587 |
+
)
|
| 588 |
+
generate_musicgen_large_tab = gr.Interface(
|
| 589 |
+
fn=generate_musicgen_large,
|
| 590 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 591 |
+
outputs=gr.Audio(type="numpy"),
|
| 592 |
+
title="Generate MusicGen Large",
|
| 593 |
+
)
|
| 594 |
+
transcribe_audio_tab = gr.Interface(
|
| 595 |
+
fn=transcribe_audio,
|
| 596 |
+
inputs=gr.Audio(type="numpy", label="Audio Sample:"),
|
| 597 |
+
outputs=gr.Textbox(label="Transcribed Text:"),
|
| 598 |
+
title="Transcribe Audio",
|
| 599 |
+
)
|
| 600 |
+
generate_mistral_instruct_tab = gr.Interface(
|
| 601 |
+
fn=generate_mistral_instruct,
|
| 602 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 603 |
+
outputs=gr.Textbox(label="Mistral Instruct Response:"),
|
| 604 |
+
title="Generate Mistral Instruct Response",
|
| 605 |
+
)
|
| 606 |
+
generate_mistral_nemo_tab = gr.Interface(
|
| 607 |
+
fn=generate_mistral_nemo,
|
| 608 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 609 |
+
outputs=gr.Textbox(label="Mistral Nemo Response:"),
|
| 610 |
+
title="Generate Mistral Nemo Response",
|
| 611 |
+
)
|
| 612 |
+
generate_gpt2_xl_tab = gr.Interface(
|
| 613 |
+
fn=generate_gpt2_xl,
|
| 614 |
+
inputs=gr.Textbox(label="Prompt:"),
|
| 615 |
+
outputs=gr.Textbox(label="GPT-2 XL Response:"),
|
| 616 |
+
title="Generate GPT-2 XL Response",
|
| 617 |
+
)
|
| 618 |
+
answer_question_minicpm_tab = gr.Interface(
|
| 619 |
+
fn=answer_question_minicpm,
|
| 620 |
+
inputs=[
|
| 621 |
+
gr.Image(type="pil", label="Image:"),
|
| 622 |
+
gr.Textbox(label="Question:"),
|
| 623 |
+
],
|
| 624 |
+
outputs=gr.Textbox(label="MiniCPM Answer:"),
|
| 625 |
+
title="Answer Question with MiniCPM",
|
| 626 |
+
)
|
| 627 |
|
| 628 |
app = gr.TabbedInterface(
|
| 629 |
+
[
|
| 630 |
+
gen_image_tab,
|
| 631 |
+
edit_image_tab,
|
| 632 |
+
generate_song_tab,
|
| 633 |
+
generate_text_tab,
|
| 634 |
+
generate_flux_image_tab,
|
| 635 |
+
generate_code_tab,
|
| 636 |
+
model_meta_llama_test_tab,
|
| 637 |
+
generate_image_sdxl_tab,
|
| 638 |
+
generate_musicgen_melody_tab,
|
| 639 |
+
generate_musicgen_large_tab,
|
| 640 |
+
transcribe_audio_tab,
|
| 641 |
+
generate_mistral_instruct_tab,
|
| 642 |
+
generate_mistral_nemo_tab,
|
| 643 |
+
generate_gpt2_xl_tab,
|
| 644 |
+
answer_question_minicpm_tab,
|
| 645 |
+
],
|
| 646 |
+
[
|
| 647 |
+
"Generate Image",
|
| 648 |
+
"Edit Image",
|
| 649 |
+
"Generate Song",
|
| 650 |
+
"Generate Text",
|
| 651 |
+
"Generate FLUX Image",
|
| 652 |
+
"Generate Code",
|
| 653 |
+
"Test Meta-Llama",
|
| 654 |
+
"Generate SDXL Image",
|
| 655 |
+
"Generate MusicGen Melody",
|
| 656 |
+
"Generate MusicGen Large",
|
| 657 |
+
"Transcribe Audio",
|
| 658 |
+
"Generate Mistral Instruct Response",
|
| 659 |
+
"Generate Mistral Nemo Response",
|
| 660 |
+
"Generate GPT-2 XL Response",
|
| 661 |
+
"Answer Question with MiniCPM",
|
| 662 |
+
],
|
| 663 |
)
|
| 664 |
|
| 665 |
app.launch(share=True)
|