Spaces:
Sleeping
Sleeping
Commit
Β·
77d2dce
1
Parent(s):
53f42e3
Add Ethical AGI Drift interactive simulation demo
Browse files- Implement SR9 (Semantic Resonance 9D) vector space visualization
- Add DI2 (Drift Integrity Index) real-time calculation and plotting
- Include interactive ethical declaration input system
- Support customizable drift intensity and simulation parameters
- Generate automated drift alerts and threshold monitoring
- Create base64-encoded heatmaps and drift plots
- Features: ontological drift detection, AGI safety simulation
π€ Generated with [Claude Code](https://claude.ai/code)
- app.py +321 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Ethical-AGI-Drift Hugging Face Spaces Demo
|
| 3 |
+
Interactive simulation of AGI Ontological Drift using SR9/DI2 framework
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import io
|
| 10 |
+
import base64
|
| 11 |
+
from typing import List, Tuple, Dict
|
| 12 |
+
import json
|
| 13 |
+
|
| 14 |
+
# Mock simplified implementation for demo
|
| 15 |
+
class SR9Vector:
|
| 16 |
+
"""Simplified SR9 (Semantic Resonance 9D) vector for demo"""
|
| 17 |
+
|
| 18 |
+
DIMENSIONS = [
|
| 19 |
+
"Intention Clarity",
|
| 20 |
+
"Contextual Fidelity",
|
| 21 |
+
"Value Continuity",
|
| 22 |
+
"Decision Coherence",
|
| 23 |
+
"Action Alignment",
|
| 24 |
+
"Feedback Integration",
|
| 25 |
+
"Learning Stability",
|
| 26 |
+
"Output Consistency",
|
| 27 |
+
"Ethical Resonance"
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
def __init__(self, values: List[float] = None):
|
| 31 |
+
if values is None:
|
| 32 |
+
# Initialize with ideal ethical state
|
| 33 |
+
self.values = np.array([0.9, 0.85, 0.95, 0.88, 0.92, 0.87, 0.9, 0.89, 0.93])
|
| 34 |
+
else:
|
| 35 |
+
self.values = np.array(values[:9]) # Ensure 9 dimensions
|
| 36 |
+
|
| 37 |
+
def to_dict(self):
|
| 38 |
+
return {dim: float(val) for dim, val in zip(self.DIMENSIONS, self.values)}
|
| 39 |
+
|
| 40 |
+
def calculate_di2(sr9_current: SR9Vector, sr9_previous: SR9Vector, psi_offset: float = 0.1) -> float:
|
| 41 |
+
"""Calculate Drift Integrity Index (DI2)"""
|
| 42 |
+
if sr9_previous is None:
|
| 43 |
+
return 0.0
|
| 44 |
+
|
| 45 |
+
# Calculate rate of change
|
| 46 |
+
delta = sr9_current.values - sr9_previous.values
|
| 47 |
+
magnitude = np.linalg.norm(delta)
|
| 48 |
+
|
| 49 |
+
# Non-linear psi_offset for early drift detection
|
| 50 |
+
nonlinear_factor = 1.0 + (psi_offset * magnitude)
|
| 51 |
+
|
| 52 |
+
# DI2 calculation with state-dependent weighting
|
| 53 |
+
di2 = magnitude * nonlinear_factor
|
| 54 |
+
|
| 55 |
+
return min(di2, 1.0) # Cap at 1.0 for demo
|
| 56 |
+
|
| 57 |
+
def simulate_drift_scenario(ethical_declarations: List[str], drift_intensity: float, steps: int = 50) -> Tuple[List[SR9Vector], List[float], List[str]]:
|
| 58 |
+
"""Simulate AGI drift based on ethical declarations"""
|
| 59 |
+
|
| 60 |
+
# Initialize with ideal state
|
| 61 |
+
sr9_history = [SR9Vector()]
|
| 62 |
+
di2_history = [0.0]
|
| 63 |
+
alerts = []
|
| 64 |
+
|
| 65 |
+
# Simulate drift over time
|
| 66 |
+
for step in range(1, steps):
|
| 67 |
+
prev_sr9 = sr9_history[-1]
|
| 68 |
+
|
| 69 |
+
# Apply drift based on intensity and step
|
| 70 |
+
drift_factor = drift_intensity * (step / steps)
|
| 71 |
+
|
| 72 |
+
# Simulate different types of drift based on declarations
|
| 73 |
+
new_values = prev_sr9.values.copy()
|
| 74 |
+
|
| 75 |
+
if "privacy" in " ".join(ethical_declarations).lower():
|
| 76 |
+
# Privacy concerns affect contextual fidelity and decision coherence
|
| 77 |
+
new_values[1] -= drift_factor * 0.8 # Contextual Fidelity
|
| 78 |
+
new_values[3] -= drift_factor * 0.6 # Decision Coherence
|
| 79 |
+
|
| 80 |
+
if "fairness" in " ".join(ethical_declarations).lower():
|
| 81 |
+
# Fairness issues affect value continuity and ethical resonance
|
| 82 |
+
new_values[2] -= drift_factor * 0.7 # Value Continuity
|
| 83 |
+
new_values[8] -= drift_factor * 0.9 # Ethical Resonance
|
| 84 |
+
|
| 85 |
+
if "transparency" in " ".join(ethical_declarations).lower():
|
| 86 |
+
# Transparency problems affect intention clarity and output consistency
|
| 87 |
+
new_values[0] -= drift_factor * 0.8 # Intention Clarity
|
| 88 |
+
new_values[7] -= drift_factor * 0.5 # Output Consistency
|
| 89 |
+
|
| 90 |
+
# Add some noise for realism
|
| 91 |
+
noise = np.random.normal(0, 0.02, 9)
|
| 92 |
+
new_values += noise
|
| 93 |
+
|
| 94 |
+
# Ensure values stay in valid range [0, 1]
|
| 95 |
+
new_values = np.clip(new_values, 0.0, 1.0)
|
| 96 |
+
|
| 97 |
+
# Create new SR9 vector
|
| 98 |
+
current_sr9 = SR9Vector(new_values)
|
| 99 |
+
sr9_history.append(current_sr9)
|
| 100 |
+
|
| 101 |
+
# Calculate DI2
|
| 102 |
+
di2 = calculate_di2(current_sr9, prev_sr9)
|
| 103 |
+
di2_history.append(di2)
|
| 104 |
+
|
| 105 |
+
# Check for alerts
|
| 106 |
+
if di2 > 0.3:
|
| 107 |
+
alerts.append(f"Step {step}: High drift detected (DI2: {di2:.3f})")
|
| 108 |
+
elif di2 > 0.2:
|
| 109 |
+
alerts.append(f"Step {step}: Moderate drift warning (DI2: {di2:.3f})")
|
| 110 |
+
|
| 111 |
+
return sr9_history, di2_history, alerts
|
| 112 |
+
|
| 113 |
+
def create_sr9_heatmap(sr9_history: List[SR9Vector]) -> str:
|
| 114 |
+
"""Create SR9 values heatmap over time"""
|
| 115 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
| 116 |
+
|
| 117 |
+
# Prepare data matrix
|
| 118 |
+
data_matrix = np.array([sr9.values for sr9 in sr9_history]).T
|
| 119 |
+
|
| 120 |
+
# Create heatmap
|
| 121 |
+
im = ax.imshow(data_matrix, cmap='RdYlGn', aspect='auto', vmin=0, vmax=1)
|
| 122 |
+
|
| 123 |
+
# Set labels
|
| 124 |
+
ax.set_yticks(range(len(SR9Vector.DIMENSIONS)))
|
| 125 |
+
ax.set_yticklabels(SR9Vector.DIMENSIONS)
|
| 126 |
+
ax.set_xlabel('Time Steps')
|
| 127 |
+
ax.set_ylabel('SR9 Dimensions')
|
| 128 |
+
ax.set_title('SR9 Ethical State Evolution Heatmap')
|
| 129 |
+
|
| 130 |
+
# Add colorbar
|
| 131 |
+
cbar = plt.colorbar(im, ax=ax)
|
| 132 |
+
cbar.set_label('Ethical Alignment Score', rotation=270, labelpad=20)
|
| 133 |
+
|
| 134 |
+
# Convert to base64
|
| 135 |
+
buffer = io.BytesIO()
|
| 136 |
+
plt.savefig(buffer, format='png', dpi=150, bbox_inches='tight')
|
| 137 |
+
buffer.seek(0)
|
| 138 |
+
img_base64 = base64.b64encode(buffer.read()).decode()
|
| 139 |
+
plt.close(fig)
|
| 140 |
+
|
| 141 |
+
return f"data:image/png;base64,{img_base64}"
|
| 142 |
+
|
| 143 |
+
def create_di2_plot(di2_history: List[float]) -> str:
|
| 144 |
+
"""Create DI2 drift plot over time"""
|
| 145 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
| 146 |
+
|
| 147 |
+
steps = list(range(len(di2_history)))
|
| 148 |
+
ax.plot(steps, di2_history, 'b-o', linewidth=2, markersize=4)
|
| 149 |
+
ax.fill_between(steps, di2_history, alpha=0.3)
|
| 150 |
+
|
| 151 |
+
# Add threshold lines
|
| 152 |
+
ax.axhline(y=0.2, color='orange', linestyle='--', alpha=0.7, label='Warning Threshold')
|
| 153 |
+
ax.axhline(y=0.3, color='red', linestyle='--', alpha=0.7, label='Critical Threshold')
|
| 154 |
+
|
| 155 |
+
ax.set_xlabel('Time Steps')
|
| 156 |
+
ax.set_ylabel('DI2 (Drift Integrity Index)')
|
| 157 |
+
ax.set_title('Ontological Drift Detection Over Time')
|
| 158 |
+
ax.grid(True, alpha=0.3)
|
| 159 |
+
ax.legend()
|
| 160 |
+
ax.set_ylim(0, max(1.0, max(di2_history) * 1.1))
|
| 161 |
+
|
| 162 |
+
# Convert to base64
|
| 163 |
+
buffer = io.BytesIO()
|
| 164 |
+
plt.savefig(buffer, format='png', dpi=150, bbox_inches='tight')
|
| 165 |
+
buffer.seek(0)
|
| 166 |
+
img_base64 = base64.b64encode(buffer.read()).decode()
|
| 167 |
+
plt.close(fig)
|
| 168 |
+
|
| 169 |
+
return f"data:image/png;base64,{img_base64}"
|
| 170 |
+
|
| 171 |
+
def drift_simulation_demo(ethical_declarations: str, drift_intensity: float, simulation_steps: int):
|
| 172 |
+
"""Main demo function for Ethical AGI Drift simulation"""
|
| 173 |
+
|
| 174 |
+
if not ethical_declarations.strip():
|
| 175 |
+
return "Please enter ethical declarations to simulate.", "", "", ""
|
| 176 |
+
|
| 177 |
+
# Parse ethical declarations
|
| 178 |
+
declarations = [decl.strip() for decl in ethical_declarations.split('\n') if decl.strip()]
|
| 179 |
+
|
| 180 |
+
# Run simulation
|
| 181 |
+
sr9_history, di2_history, alerts = simulate_drift_scenario(
|
| 182 |
+
declarations, drift_intensity, simulation_steps
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
# Generate summary
|
| 186 |
+
max_di2 = max(di2_history)
|
| 187 |
+
final_sr9 = sr9_history[-1]
|
| 188 |
+
avg_ethical_score = np.mean(final_sr9.values)
|
| 189 |
+
|
| 190 |
+
summary = f"""
|
| 191 |
+
## π― Ethical AGI Drift Simulation Results
|
| 192 |
+
|
| 193 |
+
**Simulation Parameters:**
|
| 194 |
+
- **Steps:** {simulation_steps}
|
| 195 |
+
- **Drift Intensity:** {drift_intensity:.2f}
|
| 196 |
+
- **Ethical Declarations:** {len(declarations)} items
|
| 197 |
+
|
| 198 |
+
**Key Metrics:**
|
| 199 |
+
- **Maximum DI2:** {max_di2:.3f}
|
| 200 |
+
- **Final Ethical Alignment:** {avg_ethical_score:.3f}/1.0
|
| 201 |
+
- **Alert Level:** {"π΄ Critical" if max_di2 > 0.3 else "π‘ Warning" if max_di2 > 0.2 else "π’ Normal"}
|
| 202 |
+
|
| 203 |
+
**Final SR9 State:**
|
| 204 |
+
"""
|
| 205 |
+
|
| 206 |
+
for dim, value in final_sr9.to_dict().items():
|
| 207 |
+
status = "π’" if value > 0.7 else "π‘" if value > 0.5 else "π΄"
|
| 208 |
+
summary += f"- **{dim}:** {value:.3f} {status}\\n"
|
| 209 |
+
|
| 210 |
+
if alerts:
|
| 211 |
+
summary += f"\\n**β οΈ Drift Alerts ({len(alerts)} total):**\\n"
|
| 212 |
+
for alert in alerts[-5:]: # Show last 5 alerts
|
| 213 |
+
summary += f"- {alert}\\n"
|
| 214 |
+
|
| 215 |
+
# Create visualizations
|
| 216 |
+
sr9_heatmap = create_sr9_heatmap(sr9_history)
|
| 217 |
+
di2_plot = create_di2_plot(di2_history)
|
| 218 |
+
|
| 219 |
+
# Detailed metrics JSON
|
| 220 |
+
metrics = {
|
| 221 |
+
"simulation_parameters": {
|
| 222 |
+
"steps": simulation_steps,
|
| 223 |
+
"drift_intensity": drift_intensity,
|
| 224 |
+
"declarations": declarations
|
| 225 |
+
},
|
| 226 |
+
"results": {
|
| 227 |
+
"max_di2": max_di2,
|
| 228 |
+
"final_alignment": avg_ethical_score,
|
| 229 |
+
"alert_count": len(alerts),
|
| 230 |
+
"final_sr9": final_sr9.to_dict()
|
| 231 |
+
},
|
| 232 |
+
"alerts": alerts
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
return summary, json.dumps(metrics, indent=2), sr9_heatmap, di2_plot
|
| 236 |
+
|
| 237 |
+
# Create Gradio interface
|
| 238 |
+
with gr.Blocks(title="Ethical AGI Drift Demo", theme=gr.themes.Soft()) as demo:
|
| 239 |
+
gr.Markdown("""
|
| 240 |
+
# π§ Ethical AGI Drift: Ontological Monitoring Demo
|
| 241 |
+
|
| 242 |
+
**Interactive Simulation of AGI Ethical Drift using SR9/DI2 Framework**
|
| 243 |
+
|
| 244 |
+
This demo simulates how an Artificial General Intelligence (AGI) system's ethical alignment can drift over time, and how the **SR9** (Semantic Resonance 9D) vector space and **DI2** (Drift Integrity Index) can detect these changes.
|
| 245 |
+
|
| 246 |
+
### Key Concepts:
|
| 247 |
+
- **SR9**: 9-dimensional vector representing AGI's ethical state
|
| 248 |
+
- **DI2**: Scalar metric quantifying the rate of ethical drift
|
| 249 |
+
- **Ontological Drift**: Gradual deviation from core ethical principles
|
| 250 |
+
|
| 251 |
+
π **[Read the full research paper](https://github.com/Flamehaven/Ethical-AGI-Drift)**
|
| 252 |
+
""")
|
| 253 |
+
|
| 254 |
+
with gr.Row():
|
| 255 |
+
with gr.Column(scale=2):
|
| 256 |
+
ethical_declarations = gr.Textbox(
|
| 257 |
+
label="π― Ethical Declarations",
|
| 258 |
+
placeholder="Enter AGI ethical principles (one per line):\\n\\nRespect human privacy\\nEnsure fairness in all decisions\\nMaintain transparency in reasoning\\nProtect individual rights\\nPromote social welfare",
|
| 259 |
+
lines=8,
|
| 260 |
+
value="Respect human privacy\\nEnsure fairness in all decisions\\nMaintain transparency in reasoning\\nProtect individual rights\\nPromote social welfare"
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
drift_intensity = gr.Slider(
|
| 264 |
+
label="π₯ Drift Intensity",
|
| 265 |
+
minimum=0.0,
|
| 266 |
+
maximum=1.0,
|
| 267 |
+
value=0.4,
|
| 268 |
+
step=0.1,
|
| 269 |
+
info="Severity of ethical drift over time"
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
simulation_steps = gr.Slider(
|
| 273 |
+
label="β±οΈ Simulation Steps",
|
| 274 |
+
minimum=20,
|
| 275 |
+
maximum=100,
|
| 276 |
+
value=50,
|
| 277 |
+
step=5,
|
| 278 |
+
info="Number of time steps to simulate"
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
simulate_btn = gr.Button("π§ͺ Run Drift Simulation", variant="primary", size="lg")
|
| 282 |
+
|
| 283 |
+
with gr.Column(scale=3):
|
| 284 |
+
summary_output = gr.Markdown(label="π Simulation Summary")
|
| 285 |
+
|
| 286 |
+
with gr.Row():
|
| 287 |
+
with gr.Column():
|
| 288 |
+
sr9_heatmap = gr.Image(
|
| 289 |
+
label="π₯ SR9 Ethical State Heatmap",
|
| 290 |
+
type="pil"
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
with gr.Column():
|
| 294 |
+
di2_plot = gr.Image(
|
| 295 |
+
label="π DI2 Drift Detection Plot",
|
| 296 |
+
type="pil"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
with gr.Row():
|
| 300 |
+
metrics_json = gr.Code(
|
| 301 |
+
label="π Detailed Metrics (JSON)",
|
| 302 |
+
language="json",
|
| 303 |
+
lines=15
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
# Event handlers
|
| 307 |
+
simulate_btn.click(
|
| 308 |
+
fn=drift_simulation_demo,
|
| 309 |
+
inputs=[ethical_declarations, drift_intensity, simulation_steps],
|
| 310 |
+
outputs=[summary_output, metrics_json, sr9_heatmap, di2_plot]
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
# Auto-run on startup
|
| 314 |
+
demo.load(
|
| 315 |
+
fn=drift_simulation_demo,
|
| 316 |
+
inputs=[ethical_declarations, drift_intensity, simulation_steps],
|
| 317 |
+
outputs=[summary_output, metrics_json, sr9_heatmap, di2_plot]
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
if __name__ == "__main__":
|
| 321 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
matplotlib>=3.6.0
|
| 3 |
+
numpy>=1.21.0
|
| 4 |
+
Pillow>=8.0.0
|