Spaces:
Runtime error
Runtime error
from calendar import c | |
from operator import invert | |
from webbrowser import get | |
import torch | |
import random | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import gradio as gr | |
class SpatialAttnProcessor2_0(torch.nn.Module): | |
r""" | |
Attention processor for IP-Adapater for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
text_context_len (`int`, defaults to 77): | |
The context length of the text features. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
""" | |
def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = "cuda",dtype = torch.float16): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.device = device | |
self.dtype = dtype | |
self.hidden_size = hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.total_length = id_length + 1 | |
self.id_length = id_length | |
self.id_bank = {} | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None): | |
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2) | |
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb) | |
# 生成一个0到1之间的随机数 | |
global total_count,attn_count,cur_step,mask256,mask1024,mask4096 | |
global sa16, sa32, sa64 | |
global write | |
if write: | |
self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]] | |
else: | |
encoder_hidden_states = torch.cat(self.id_bank[cur_step][0],hidden_states[:1],self.id_bank[cur_step][1],hidden_states[1:]) | |
# 判断随机数是否大于0.5 | |
if cur_step <5: | |
hidden_states = self.__call2__(attn, hidden_states,encoder_hidden_states,attention_mask,temb) | |
else: # 256 1024 4096 | |
random_number = random.random() | |
if cur_step <20: | |
rand_num = 0.3 | |
else: | |
rand_num = 0.1 | |
if random_number > rand_num: | |
if not write: | |
if hidden_states.shape[1] == 32* 32: | |
attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:] | |
elif hidden_states.shape[1] ==16*16: | |
attention_mask = mask256[mask256.shape[0] // self.total_length * self.id_length:] | |
else: | |
attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:] | |
else: | |
if hidden_states.shape[1] == 32* 32: | |
attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length] | |
elif hidden_states.shape[1] ==16*16: | |
attention_mask = mask256[:mask256.shape[0] // self.total_length * self.id_length] | |
else: | |
attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length] | |
hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb) | |
else: | |
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb) | |
attn_count +=1 | |
if attn_count == total_count: | |
attn_count = 0 | |
cur_step += 1 | |
mask256,mask1024,mask4096 = cal_attn_mask(self.total_length,self.id_length,sa16,sa32,sa64, device=self.device, dtype= self.dtype) | |
return hidden_states | |
def __call1__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if encoder_hidden_states is not None: | |
raise Exception("not implement") | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
total_batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2) | |
total_batch_size,nums_token,channel = hidden_states.shape | |
img_nums = total_batch_size//2 | |
hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel) | |
batch_size, sequence_length, _ = hidden_states.shape | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states # B, N, C | |
else: | |
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
# if input_ndim == 4: | |
# tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
# if attn.residual_connection: | |
# tile_hidden_states = tile_hidden_states + residual | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
def __call2__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
def cal_attn_mask(total_length,id_length,sa16,sa32,sa64,device="cuda",dtype= torch.float16): | |
bool_matrix256 = torch.rand((1, total_length * 256),device = device,dtype = dtype) < sa16 | |
bool_matrix1024 = torch.rand((1, total_length * 1024),device = device,dtype = dtype) < sa32 | |
bool_matrix4096 = torch.rand((1, total_length * 4096),device = device,dtype = dtype) < sa64 | |
bool_matrix256 = bool_matrix256.repeat(total_length,1) | |
bool_matrix1024 = bool_matrix1024.repeat(total_length,1) | |
bool_matrix4096 = bool_matrix4096.repeat(total_length,1) | |
for i in range(total_length): | |
bool_matrix256[i:i+1,id_length*256:] = False | |
bool_matrix1024[i:i+1,id_length*1024:] = False | |
bool_matrix4096[i:i+1,id_length*4096:] = False | |
bool_matrix256[i:i+1,i*256:(i+1)*256] = True | |
bool_matrix1024[i:i+1,i*1024:(i+1)*1024] = True | |
bool_matrix4096[i:i+1,i*4096:(i+1)*4096] = True | |
mask256 = bool_matrix256.unsqueeze(1).repeat(1,256,1).reshape(-1,total_length * 256) | |
mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,1024,1).reshape(-1,total_length * 1024) | |
mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,4096,1).reshape(-1,total_length * 4096) | |
return mask256,mask1024,mask4096 | |
def cal_attn_mask_xl(total_length,id_length,sa32,sa64,height,width,device="cuda",dtype= torch.float16): | |
nums_1024 = (height // 32) * (width // 32) | |
nums_4096 = (height // 16) * (width // 16) | |
bool_matrix1024 = torch.rand((1, total_length * nums_1024),device = device,dtype = dtype) < sa32 | |
bool_matrix4096 = torch.rand((1, total_length * nums_4096),device = device,dtype = dtype) < sa64 | |
bool_matrix1024 = bool_matrix1024.repeat(total_length,1) | |
bool_matrix4096 = bool_matrix4096.repeat(total_length,1) | |
for i in range(total_length): | |
bool_matrix1024[i:i+1,id_length*nums_1024:] = False | |
bool_matrix4096[i:i+1,id_length*nums_4096:] = False | |
bool_matrix1024[i:i+1,i*nums_1024:(i+1)*nums_1024] = True | |
bool_matrix4096[i:i+1,i*nums_4096:(i+1)*nums_4096] = True | |
mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,nums_1024,1).reshape(-1,total_length * nums_1024) | |
mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,nums_4096,1).reshape(-1,total_length * nums_4096) | |
return mask1024,mask4096 | |
def cal_attn_indice_xl_effcient_memory(total_length,id_length,sa32,sa64,height,width,device="cuda",dtype= torch.float16): | |
nums_1024 = (height // 32) * (width // 32) | |
nums_4096 = (height // 16) * (width // 16) | |
bool_matrix1024 = torch.rand((total_length,nums_1024),device = device,dtype = dtype) < sa32 | |
bool_matrix4096 = torch.rand((total_length,nums_4096),device = device,dtype = dtype) < sa64 | |
# 用nonzero()函数获取所有为True的值的索引 | |
indices1024 = [torch.nonzero(bool_matrix1024[i], as_tuple=True)[0] for i in range(total_length)] | |
indices4096 = [torch.nonzero(bool_matrix4096[i], as_tuple=True)[0] for i in range(total_length)] | |
return indices1024,indices4096 | |
class AttnProcessor(nn.Module): | |
r""" | |
Default processor for performing attention-related computations. | |
""" | |
def __init__( | |
self, | |
hidden_size=None, | |
cross_attention_dim=None, | |
): | |
super().__init__() | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class AttnProcessor2_0(torch.nn.Module): | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__( | |
self, | |
hidden_size=None, | |
cross_attention_dim=None, | |
): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
def is_torch2_available(): | |
return hasattr(F, "scaled_dot_product_attention") | |
# 将列表转换为字典的函数 | |
def character_to_dict(general_prompt): | |
character_dict = {} | |
generate_prompt_arr = general_prompt.splitlines() | |
character_index_dict = {} | |
invert_character_index_dict = {} | |
character_list = [] | |
for ind,string in enumerate(generate_prompt_arr): | |
# 分割字符串寻找key和value | |
start = string.find('[') | |
end = string.find(']') | |
if start != -1 and end != -1: | |
key = string[start:end+1] | |
value = string[end+1:] | |
if "#" in value: | |
value = value.rpartition('#')[0] | |
if key in character_dict: | |
raise gr.Error("duplicate character descirption: " + key) | |
character_dict[key] = value | |
character_list.append(key) | |
return character_dict,character_list | |
def get_id_prompt_index(character_dict,id_prompts): | |
replace_id_prompts = [] | |
character_index_dict = {} | |
invert_character_index_dict = {} | |
for ind,id_prompt in enumerate(id_prompts): | |
for key in character_dict.keys(): | |
if key in id_prompt: | |
if key not in character_index_dict: | |
character_index_dict[key] = [] | |
character_index_dict[key].append(ind) | |
invert_character_index_dict[ind] = key | |
replace_id_prompts.append(id_prompt.replace(key,character_dict[key])) | |
return character_index_dict,invert_character_index_dict,replace_id_prompts | |
def get_cur_id_list(real_prompt,character_dict,character_index_dict): | |
list_arr = [] | |
for keys in character_index_dict.keys(): | |
if keys in real_prompt: | |
list_arr = list_arr + character_index_dict[keys] | |
real_prompt = real_prompt.replace(keys,character_dict[keys]) | |
return list_arr,real_prompt | |
def process_original_prompt(character_dict,prompts,id_length): | |
replace_prompts = [] | |
character_index_dict = {} | |
invert_character_index_dict = {} | |
for ind,prompt in enumerate(prompts): | |
for key in character_dict.keys(): | |
if key in prompt: | |
if key not in character_index_dict: | |
character_index_dict[key] = [] | |
character_index_dict[key].append(ind) | |
if ind not in invert_character_index_dict: | |
invert_character_index_dict[ind] = [] | |
invert_character_index_dict[ind].append(key) | |
cur_prompt = prompt | |
if ind in invert_character_index_dict: | |
for key in invert_character_index_dict[ind]: | |
cur_prompt = cur_prompt.replace(key,character_dict[key] + " ") | |
replace_prompts.append(cur_prompt) | |
ref_index_dict = {} | |
ref_totals = [] | |
print(character_index_dict) | |
for character_key in character_index_dict.keys(): | |
if character_key not in character_index_dict: | |
raise gr.Error("{} not have prompt description, please remove it".format(character_key)) | |
index_list = character_index_dict[character_key] | |
index_list = [index for index in index_list if len(invert_character_index_dict[index]) == 1] | |
if len(index_list) < id_length: | |
raise gr.Error(f"{character_key} not have enough prompt description, need no less than {id_length}, but you give {len(index_list)}") | |
ref_index_dict[character_key] = index_list[:id_length] | |
ref_totals = ref_totals + index_list[:id_length] | |
return character_index_dict,invert_character_index_dict,replace_prompts,ref_index_dict,ref_totals | |
def get_ref_character(real_prompt,character_dict): | |
list_arr = [] | |
for keys in character_dict.keys(): | |
if keys in real_prompt: | |
list_arr = list_arr + [keys] | |
return list_arr |