Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,93 +1,67 @@
|
|
1 |
-
import streamlit as st
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
p.resetBasePositionAndOrientation(robot_id, point, [0, 0, 0, 1])
|
70 |
-
time.sleep(1)
|
71 |
-
|
72 |
-
# Keep the simulation running
|
73 |
-
st.write("Simulation running... Close the PyBullet window to continue.")
|
74 |
-
while True:
|
75 |
-
p.stepSimulation()
|
76 |
-
time.sleep(1 / 240)
|
77 |
-
|
78 |
-
# Run the app
|
79 |
-
if st.button("Find Path and Visualize"):
|
80 |
-
# Load pretrained model
|
81 |
-
model = load_pretrained_model()
|
82 |
-
|
83 |
-
# Predict path
|
84 |
-
path = predict_path(model, start, target, obstacle_list)
|
85 |
-
|
86 |
-
if path is not None:
|
87 |
-
st.success("Path found!")
|
88 |
-
st.write("Path:", path)
|
89 |
-
|
90 |
-
# Visualize the path in PyBullet
|
91 |
-
visualize_path(path)
|
92 |
-
else:
|
93 |
-
st.error("No path found.")
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import gradio as gr
|
4 |
+
from scipy.spatial.distance import euclidean
|
5 |
+
from scipy.optimize import minimize
|
6 |
+
|
7 |
+
# Define the robot's arm lengths (6-DOF)
|
8 |
+
L = np.array([1, 1, 1, 1, 1, 1]) # Lengths of each arm segment
|
9 |
+
|
10 |
+
# Forward kinematics: Compute the end-effector position given joint angles
|
11 |
+
def forward_kinematics(theta):
|
12 |
+
theta = np.array(theta)
|
13 |
+
x = L[0] * np.cos(theta[0]) + L[1] * np.cos(theta[0] + theta[1]) + L[2] * np.cos(theta[0] + theta[1] + theta[2]) + \
|
14 |
+
L[3] * np.cos(theta[0] + theta[1] + theta[2] + theta[3]) + L[4] * np.cos(theta[0] + theta[1] + theta[2] + theta[3] + theta[4]) + \
|
15 |
+
L[5] * np.cos(theta[0] + theta[1] + theta[2] + theta[3] + theta[4] + theta[5])
|
16 |
+
y = L[0] * np.sin(theta[0]) + L[1] * np.sin(theta[0] + theta[1]) + L[2] * np.sin(theta[0] + theta[1] + theta[2]) + \
|
17 |
+
L[3] * np.sin(theta[0] + theta[1] + theta[2] + theta[3]) + L[4] * np.sin(theta[0] + theta[1] + theta[2] + theta[3] + theta[4]) + \
|
18 |
+
L[5] * np.sin(theta[0] + theta[1] + theta[2] + theta[3] + theta[4] + theta[5])
|
19 |
+
return np.array([x, y])
|
20 |
+
|
21 |
+
# Objective function: Minimize the distance between the end-effector and the target
|
22 |
+
def objective_function(theta, target):
|
23 |
+
end_effector = forward_kinematics(theta)
|
24 |
+
return euclidean(end_effector, target)
|
25 |
+
|
26 |
+
# Find the shortest path (joint angles) to reach the target
|
27 |
+
def find_shortest_path(initial_angles, target):
|
28 |
+
result = minimize(objective_function, initial_angles, args=(target,), method='BFGS')
|
29 |
+
return result.x
|
30 |
+
|
31 |
+
# Gradio interface
|
32 |
+
def robot_pathfinder(target_x, target_y):
|
33 |
+
target = np.array([target_x, target_y])
|
34 |
+
initial_angles = np.array([0, 0, 0, 0, 0, 0]) # Initial joint angles
|
35 |
+
optimal_angles = find_shortest_path(initial_angles, target)
|
36 |
+
|
37 |
+
# Plot the robot arm
|
38 |
+
fig, ax = plt.subplots()
|
39 |
+
ax.set_xlim(-5, 5)
|
40 |
+
ax.set_ylim(-5, 5)
|
41 |
+
ax.set_aspect('equal')
|
42 |
+
|
43 |
+
# Draw the robot arm
|
44 |
+
x = [0]
|
45 |
+
y = [0]
|
46 |
+
for i in range(len(L)):
|
47 |
+
x.append(x[-1] + L[i] * np.cos(np.sum(optimal_angles[:i+1])))
|
48 |
+
y.append(y[-1] + L[i] * np.sin(np.sum(optimal_angles[:i+1])))
|
49 |
+
ax.plot(x, y, 'o-', lw=2, markersize=10)
|
50 |
+
|
51 |
+
# Mark the target
|
52 |
+
ax.plot(target[0], target[1], 'rx', markersize=10)
|
53 |
+
|
54 |
+
plt.title("6-DOF Robot Arm Pathfinding")
|
55 |
+
return fig
|
56 |
+
|
57 |
+
# Gradio app
|
58 |
+
iface = gr.Interface(
|
59 |
+
fn=robot_pathfinder,
|
60 |
+
inputs=["number", "number"],
|
61 |
+
outputs="plot",
|
62 |
+
live=True,
|
63 |
+
title="6-DOF Robot Shortest Path Finder",
|
64 |
+
description="Enter target coordinates (x, y) to find the shortest path for a 6-DOF robot arm."
|
65 |
+
)
|
66 |
+
|
67 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|