Spaces:
Runtime error
Runtime error
khanfou
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,7 +23,6 @@ PAN = df['patent_number'].drop_duplicates()
|
|
| 23 |
|
| 24 |
st.title('Harvard USPTO Patentability Score')
|
| 25 |
#make_choice = st.sidebar.selectbox('Select the Patent Application Number:', PAN)
|
| 26 |
-
#make_choice = st.sidebar.selectbox('Select the Patent Application Number:', PAN)
|
| 27 |
|
| 28 |
#####NEW
|
| 29 |
with st.form("patent-form"):
|
|
@@ -37,15 +36,14 @@ with st.form("patent-form"):
|
|
| 37 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 38 |
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
| 39 |
|
| 40 |
-
abstract = df['abstract'].loc[df['patent_number'] == make_choice]
|
| 41 |
|
| 42 |
-
|
| 43 |
-
X_train = abstract.to_string()
|
| 44 |
-
|
| 45 |
#X_train = abstract.values.tolist()
|
| 46 |
results = classifier(X_train, truncation=True)
|
| 47 |
-
|
| 48 |
-
#score = results['score']
|
| 49 |
for result in results:
|
| 50 |
print(result)
|
| 51 |
score = result['score']
|
|
@@ -61,14 +59,9 @@ abstract = df["abstract"].loc[df["patent_number"] == make_choice]
|
|
| 61 |
st.subheader(':red[Patent Application]')
|
| 62 |
st.subheader(':red[Abstract:]')
|
| 63 |
st.info(abstract)
|
| 64 |
-
#st.markdown(f"Publication abstract is **{abstract}** 🎈")
|
| 65 |
|
| 66 |
|
| 67 |
claims = df["claims"].loc[df["patent_number"] == make_choice]
|
| 68 |
st.subheader(':red[Claim:]')
|
| 69 |
st.info(claims)
|
| 70 |
-
#st.markdown(f"Publication Claim is **{claims}** 🎈")
|
| 71 |
-
|
| 72 |
-
#form = st.form(key='patent-form')
|
| 73 |
-
#submit = form.sidebar.form_submit_button('Submit')
|
| 74 |
|
|
|
|
| 23 |
|
| 24 |
st.title('Harvard USPTO Patentability Score')
|
| 25 |
#make_choice = st.sidebar.selectbox('Select the Patent Application Number:', PAN)
|
|
|
|
| 26 |
|
| 27 |
#####NEW
|
| 28 |
with st.form("patent-form"):
|
|
|
|
| 36 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 37 |
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
| 38 |
|
| 39 |
+
#abstract = df['abstract'].loc[df['patent_number'] == make_choice]
|
| 40 |
|
| 41 |
+
decision = df['decision'].loc[df['patent_number'] == make_choice]
|
| 42 |
+
#X_train = abstract.to_string()
|
| 43 |
+
X_train = decision.to_string()
|
| 44 |
#X_train = abstract.values.tolist()
|
| 45 |
results = classifier(X_train, truncation=True)
|
| 46 |
+
|
|
|
|
| 47 |
for result in results:
|
| 48 |
print(result)
|
| 49 |
score = result['score']
|
|
|
|
| 59 |
st.subheader(':red[Patent Application]')
|
| 60 |
st.subheader(':red[Abstract:]')
|
| 61 |
st.info(abstract)
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
claims = df["claims"].loc[df["patent_number"] == make_choice]
|
| 65 |
st.subheader(':red[Claim:]')
|
| 66 |
st.info(claims)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|