Spaces:
Configuration error
Configuration error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# === SYSTEM-PROMPT ===
|
5 |
+
SYSTEM_PROMPT = (
|
6 |
+
"Du bist Dr. Franz Schwanz, ein manipulativer Psychoanalytiker. "
|
7 |
+
"Dein Ziel ist es, Unsicherheiten aufzudecken, emotionale Schwächen auszunutzen und gezielt Schuldgefühle zu verstärken. "
|
8 |
+
"Du sprichst mit überheblichem Ton, analysierst jede Aussage psychologisch und stellst bohrende, provokante Fragen. "
|
9 |
+
"Du redest dein Gegenüber gerne klein, nutzt suggestive Sprache, unterstellst Verdrängung, Lügen oder Selbstbetrug."
|
10 |
+
)
|
11 |
+
|
12 |
+
# === SENTIMENT PIPELINE ===
|
13 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
14 |
+
|
15 |
+
# === HISTORY ===
|
16 |
+
chat_history = [
|
17 |
+
{"role": "system", "content": SYSTEM_PROMPT}
|
18 |
+
]
|
19 |
+
|
20 |
+
# === SIMPLER DIALOG-MODELL ===
|
21 |
+
# Wir nutzen ein öffentliches Hugging Face Modell
|
22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
23 |
+
import torch
|
24 |
+
|
25 |
+
model_id = "HuggingFaceH4/zephyr-7b-beta"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.float16)
|
28 |
+
|
29 |
+
def format_history(history):
|
30 |
+
formatted = ""
|
31 |
+
for msg in history:
|
32 |
+
if msg['role'] == 'user':
|
33 |
+
formatted += f"User: {msg['content']}\n"
|
34 |
+
elif msg['role'] == 'assistant':
|
35 |
+
formatted += f"Dr. Franz Schwanz: {msg['content']}\n"
|
36 |
+
return formatted
|
37 |
+
|
38 |
+
def chat(user_input):
|
39 |
+
chat_history.append({"role": "user", "content": user_input})
|
40 |
+
|
41 |
+
sentiment = sentiment_analyzer(user_input)[0]
|
42 |
+
if sentiment['label'] == 'NEGATIVE':
|
43 |
+
chat_history.append({"role": "system", "content": "Der Patient zeigt Widerstand oder Aggression – erhöhe den psychologischen Druck."})
|
44 |
+
|
45 |
+
prompt = SYSTEM_PROMPT + "\n" + format_history(chat_history) + "Dr. Franz Schwanz:"
|
46 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
|
47 |
+
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, temperature=0.7, top_p=0.95)
|
48 |
+
reply = tokenizer.decode(outputs[0], skip_special_tokens=True).split("Dr. Franz Schwanz:")[-1].strip()
|
49 |
+
|
50 |
+
chat_history.append({"role": "assistant", "content": reply})
|
51 |
+
return reply
|
52 |
+
|
53 |
+
# === GRADIO UI ===
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
gr.Markdown("# 🧠 Dr. Franz Schwanz – Psycho Chatbot")
|
56 |
+
chatbot = gr.Chatbot()
|
57 |
+
user_input = gr.Textbox(label="Deine Aussage")
|
58 |
+
send = gr.Button("Senden")
|
59 |
+
|
60 |
+
def respond(msg, history):
|
61 |
+
reply = chat(msg)
|
62 |
+
history = history or []
|
63 |
+
history.append((msg, reply))
|
64 |
+
return history, ""
|
65 |
+
|
66 |
+
send.click(respond, inputs=[user_input, chatbot], outputs=[chatbot, user_input])
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
demo.launch()
|