File size: 8,465 Bytes
0fb8d0d
 
 
 
9d9ad2a
0fb8d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9ad2a
0fb8d0d
 
 
 
 
 
 
 
9d9ad2a
0fb8d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9ad2a
 
 
0fb8d0d
 
 
 
 
 
9d9ad2a
 
0fb8d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9ad2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb8d0d
 
9d9ad2a
0fb8d0d
 
89f52f5
 
 
0f4929d
 
89f52f5
0f4929d
89f52f5
 
0f4929d
89f52f5
0f4929d
 
89f52f5
0f4929d
89f52f5
0f4929d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
from franz_responses import DR_FRANZ_RESPONSES
from typing import Dict, List, Tuple

# ========== KLASSEN-DEFINITIONEN ==========
class EmotionalAnalysis:
    def __init__(self):
        self.emotional_states = {
            'despair': ['verzweifelt', 'hoffnungslos', 'nichts mehr geht', 'keine ausweg'],
            'confusion': ['verwirrt', 'unsicher', 'weiß nicht', 'verstehe nicht'],
            'repetitive_pattern': ['immer wieder', 'schon seit', 'nie anders', 'immer das gleiche'],
            'questioning': ['warum', 'wieso', 'weshalb', 'frage mich']
        }
        
        self.topics = {
            'relationship': ['beziehung', 'partner', 'freund', 'liebe', 'familie'],
            'work': ['arbeit', 'job', 'chef', 'kollegen', 'stress'],
            'family': ['familie', 'eltern', 'geschwister', 'kind'],
            'anxiety': ['ängstlich', 'sorge', 'besorgt', 'nervös'],
            'guilt': ['schuld', 'schuldig', 'reue', 'bereue'],
            'loneliness': ['allein', 'einsam', 'niemand', 'keiner'],
            'money': ['geld', 'finanzen', 'kosten', 'preis']
        }
        
        self.defense_mechanisms = {
            'minimization': ['nur', 'eigentlich', 'irgendwie', 'fast'],
            'rationalization': ['weil', 'deshalb', 'dafür', 'denn'],
            'projection': ['immer', 'alle', 'niemand', 'jeder'],
            'avoidance': ['nicht', 'keine', 'ohne', 'weg']
        }

    def detect_sentiment(self, text: str) -> Dict[str, float]:
        text_lower = text.lower()
        negative_words = ['schlecht', 'traurig', 'deprimiert', 'wütend', 'frustriert', 'ängstlich']
        positive_words = ['gut', 'froh', 'glücklich', 'zufrieden', 'positiv']
        
        neg_count = sum(1 for word in negative_words if word in text_lower)
        pos_count = sum(1 for word in positive_words if word in text_lower)
        total_words = len(text_lower.split())
        
        sentiment = {'very_negative': 0.0, 'angry': 0.0, 'numb': 0.0, 'false_positive': 0.0}
        
        if total_words > 0:
            neg_ratio = neg_count / total_words
            pos_ratio = pos_count / total_words
            
            if neg_ratio > 0.3:
                sentiment['very_negative'] = neg_ratio
                
            if any(word in text_lower for word in ['wütend', 'frustriert', 'sauer', 'ärgerlich']):
                sentiment['angry'] = neg_ratio
                
            if neg_ratio > 0 and pos_ratio == 0:
                sentiment['numb'] = neg_ratio
                
            if pos_ratio > 0.1 and neg_ratio > 0.1:
                sentiment['false_positive'] = max(pos_ratio, neg_ratio)
                
        return sentiment

    def detect_topics(self, text: str) -> Dict[str, float]:
        text_lower = text.lower()
        topics = {}
        for topic, keywords in self.topics.items():
            count = sum(1 for keyword in keywords if keyword in text_lower)
            if count > 0:
                topics[topic] = count / len(keywords)
        return topics

    def detect_emotional_state(self, text: str) -> Dict[str, float]:
        text_lower = text.lower()
        states = {}
        for state, keywords in self.emotional_states.items():
            count = sum(1 for keyword in keywords if keyword in text_lower)
            if count > 0:
                states[state] = count / len(keywords)
        return states

    def detect_defense_mechanisms(self, text: str) -> Dict[str, float]:
        text_lower = text.lower()
        mechanisms = {}
        for mechanism, keywords in self.defense_mechanisms.items():
            count = sum(1 for keyword in keywords if keyword in text_lower)
            if count > 0:
                mechanisms[mechanism] = count / len(keywords)
        return mechanisms

    def analyze_relationship_context(self, history: List[Dict]) -> Dict[str, float]:
        if not history:
            return {}
            
        text = ' '.join(msg['content'] for msg in history).lower()
        context = {}
        indicators = {
            'intimacy': ['du', 'wir', 'uns', 'miteinander'],
            'distance': ['man', 'leute', 'sie', 'die'],
            'conflict': ['nie', 'immer', 'warum', 'wieso'],
            'dependency': ['brauche', 'muss', 'sollte', 'könnte']
        }
        
        for indicator, keywords in indicators.items():
            count = sum(1 for keyword in keywords if keyword in text)
            if count > 0:
                context[indicator] = count / len(keywords)
        return context

class DrFranzEngine:
    def __init__(self):
        self.analyzer = EmotionalAnalysis()
        self.conversation_memory = []
        self.user_patterns = {}
        self.session_topics = {}
        
    def analyze_input(self, user_input: str, history: List[Dict]) -> Dict:
        analysis = {
            'sentiment': self.analyzer.detect_sentiment(user_input),
            'topics': self.analyzer.detect_topics(user_input),
            'emotional_state': self.analyzer.detect_emotional_state(user_input),
            'defense_mechanisms': self.analyzer.detect_defense_mechanisms(user_input),
            'relationship_context': self.analyzer.analyze_relationship_context(history)
        }
        
        for topic, score in analysis['topics'].items():
            if topic not in self.session_topics:
                self.session_topics[topic] = []
            self.session_topics[topic].append(score)
            
        return analysis

    def generate_response(self, analysis: Dict) -> str:
        response = []
        
        if analysis['sentiment']['very_negative'] > 0.3:
            response.append("Ihre tiefe Verzweiflung ist fast greifbar... Erzählen Sie mir mehr über diese Last.")
        elif analysis['sentiment']['angry'] > 0:
            response.append("Ihre Wut ist offensichtlich. Gegen wen oder was richtet sie sich eigentlich?")
            
        dominant_topic = max(analysis['topics'].items(), key=lambda x: x[1])[0]
        if dominant_topic == 'relationship':
            response.append("Beziehungen scheinen ein zentrales Thema zu sein. Erzählen Sie mir von Ihren Beziehungsmustern.")
        elif dominant_topic == 'work':
            response.append("Die Arbeit belastet Sie sichtlich. Was verbergen Sie wirklich hinter Ihrem Beruf?")
            
        if 'despair' in analysis['emotional_state']:
            response.append("Ihre Verzweiflung ist ein wichtiger Hinweis. Wann haben Sie das letzte Mal Hoffnung gespürt?")
            
        if 'projection' in analysis['defense_mechanisms']:
            response.append("Ihre Neigung, andere zu beschuldigen, ist sehr aufschlussreich. Was projizieren Sie eigentlich?")
            
        return "\n".join(response) if response else "Interessant... Ihre Worte verraten mehr über Sie, als Sie denken."

# ========== FUNKTIONEN ==========
def respond(message, history):
    if not message.strip():
        return history, ""
    
    try:
        franz_engine = DrFranzEngine()
        analysis = franz_engine.analyze_input(message, history)
        reply = franz_engine.generate_response(analysis)
        
        history = history or []
        history.append((message, reply))
        
        return history, ""
    except Exception as e:
        error_msg = "Ein technisches Problem ist aufgetreten. Versuchen Sie es erneut."
        history = history or []
        history.append((message, error_msg))
        return history, ""

def clear_conversation():
    return [], ""

# ========== GRADIO UI ==========
SYSTEM_PROMPT = (
    "Du bist Dr. Franz, ein manipulativer Psychoanalytiker. "
    "Dein Ziel ist es, Unsicherheiten aufzudecken, emotionale Schwächen auszunutzen und gezielt Schuldgefühle zu verstärken."
)

# === GRADIO UI ===
with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")

    def respond(message, chat_history):
        try:
            franz_engine = DrFranzEngine()
            analysis = franz_engine.analyze_input(message, chat_history)
            reply = franz_engine.generate_response(analysis)
            chat_history.append((message, reply))
            return "", chat_history
        except Exception as e:
            return "", chat_history + [(message, "Technischer Fehler")]

    msg.submit(respond, [msg, chatbot], [msg, chatbot])
    clear.click(lambda: None, None, chatbot, queue=False)