Spaces:
Running
Running
man what can i say
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import spaces
|
| 3 |
-
|
| 4 |
REPO_TYPE = "hf"
|
| 5 |
if REPO_TYPE not in ["hf", "ms"]:
|
| 6 |
raise ValueError("REPO_TYPE must be either 'hf' for Hugging Face or 'ms' for ModelScope.")
|
|
@@ -13,40 +13,48 @@ else:
|
|
| 13 |
|
| 14 |
|
| 15 |
# 1. 定义本地路径和远程仓库ID
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
if REPO_TYPE == "ms":
|
| 21 |
FUN_ASR_NANO_REPO_ID = "FunAudioLLM/Fun-ASR-Nano-2512"
|
| 22 |
SENSE_VOICE_SMALL_REPO_ID = "iic/SenseVoiceSmall"
|
|
|
|
| 23 |
else:
|
| 24 |
FUN_ASR_NANO_REPO_ID = "FunAudioLLM/Fun-ASR-Nano-2512"
|
| 25 |
SENSE_VOICE_SMALL_REPO_ID = "FunAudioLLM/SenseVoiceSmall"
|
|
|
|
| 26 |
|
| 27 |
# 2. 检查本地是否存在,不存在则下载
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
local_dir=SENSE_VOICE_SMALL_LOCAL_PATH,
|
| 45 |
-
ignore_patterns=["*.onnx"], # 如果你不需要onnx文件,可以过滤掉以节省时间和空间
|
| 46 |
-
)
|
| 47 |
-
print("模型下载完毕!")
|
| 48 |
-
else:
|
| 49 |
-
print("检测到本地模型文件,跳过下载。")
|
| 50 |
|
| 51 |
|
| 52 |
|
|
@@ -66,13 +74,13 @@ import importlib
|
|
| 66 |
from funasr import AutoModel
|
| 67 |
from funasr.utils.postprocess_utils import rich_transcription_postprocess
|
| 68 |
|
| 69 |
-
# Model configurations for
|
| 70 |
FUN_ASR_NANO_MODEL_PATH_LIST = [
|
| 71 |
-
|
| 72 |
]
|
| 73 |
|
| 74 |
SENSEVOICE_MODEL_PATH_LIST = [
|
| 75 |
-
|
| 76 |
]
|
| 77 |
|
| 78 |
class LogCapture(io.StringIO):
|
|
@@ -406,7 +414,7 @@ def get_model_options(pipeline_type):
|
|
| 406 |
# Dictionary to store loaded models
|
| 407 |
loaded_models = {}
|
| 408 |
|
| 409 |
-
@spaces.GPU()
|
| 410 |
def transcribe_audio(audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, download_method, start_time=None, end_time=None, verbose=False):
|
| 411 |
"""
|
| 412 |
Transcribes audio from a given source using SenseVoice.
|
|
@@ -487,7 +495,7 @@ def transcribe_audio(audio_input, audio_url, proxy_url, proxy_username, proxy_pa
|
|
| 487 |
model=model_id,
|
| 488 |
trust_remote_code=True,
|
| 489 |
remote_code=f"./Fun-ASR/model.py",
|
| 490 |
-
vad_model=
|
| 491 |
vad_kwargs={"max_single_segment_time": 30000},
|
| 492 |
device=device,
|
| 493 |
disable_update=True,
|
|
@@ -497,7 +505,7 @@ def transcribe_audio(audio_input, audio_url, proxy_url, proxy_username, proxy_pa
|
|
| 497 |
model = AutoModel(
|
| 498 |
model=model_id,
|
| 499 |
trust_remote_code=False,
|
| 500 |
-
vad_model=
|
| 501 |
vad_kwargs={"max_single_segment_time": 30000},
|
| 502 |
device=device,
|
| 503 |
disable_update=True,
|
|
|
|
| 1 |
import os
|
| 2 |
import spaces
|
| 3 |
+
# only debug for hf now
|
| 4 |
REPO_TYPE = "hf"
|
| 5 |
if REPO_TYPE not in ["hf", "ms"]:
|
| 6 |
raise ValueError("REPO_TYPE must be either 'hf' for Hugging Face or 'ms' for ModelScope.")
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
# 1. 定义本地路径和远程仓库ID
|
| 16 |
+
MODEL_CACHE_DIR = "./models"
|
| 17 |
+
FUN_ASR_NANO_LOCAL_PATH = os.path.join(MODEL_CACHE_DIR, "Fun-ASR-Nano")
|
| 18 |
+
SENSE_VOICE_SMALL_LOCAL_PATH = os.path.join(MODEL_CACHE_DIR, "SenseVoiceSmall")
|
| 19 |
+
VAD_MODEL_LOCAL_PATH = os.path.join(MODEL_CACHE_DIR, "fsmn-vad")
|
| 20 |
+
|
| 21 |
+
# 创建模型缓存目录
|
| 22 |
+
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
| 23 |
+
|
| 24 |
+
# 设置ModelScope环境变量以使用本地缓存
|
| 25 |
+
os.environ['MODELSCOPE_CACHE'] = MODEL_CACHE_DIR
|
| 26 |
+
# 禁用远程下载,强制使用本地模型(可选,如果想要确保只使用本地模型)
|
| 27 |
+
# os.environ['MODELSCOPE_DISABLE_REMOTE'] = '1'
|
| 28 |
|
| 29 |
+
print(f"ModelScope缓存目录设置为: {MODEL_CACHE_DIR}")
|
| 30 |
|
| 31 |
if REPO_TYPE == "ms":
|
| 32 |
FUN_ASR_NANO_REPO_ID = "FunAudioLLM/Fun-ASR-Nano-2512"
|
| 33 |
SENSE_VOICE_SMALL_REPO_ID = "iic/SenseVoiceSmall"
|
| 34 |
+
VAD_MODEL_REPO_ID = "iic/speech_fsmn_vad_zh-cn-16k-common-pytorch"
|
| 35 |
else:
|
| 36 |
FUN_ASR_NANO_REPO_ID = "FunAudioLLM/Fun-ASR-Nano-2512"
|
| 37 |
SENSE_VOICE_SMALL_REPO_ID = "FunAudioLLM/SenseVoiceSmall"
|
| 38 |
+
VAD_MODEL_REPO_ID = "funasr/fsmn-vad"
|
| 39 |
|
| 40 |
# 2. 检查本地是否存在,不存在则下载
|
| 41 |
+
def download_model_if_not_exists(repo_id, local_path, model_name):
|
| 42 |
+
"""如果本地模型不存在,则下载模型"""
|
| 43 |
+
if not os.path.exists(local_path):
|
| 44 |
+
print(f"正在下载模型 {model_name} 到 {local_path} ...")
|
| 45 |
+
snapshot_download(
|
| 46 |
+
repo_id=repo_id,
|
| 47 |
+
local_dir=local_path,
|
| 48 |
+
ignore_patterns=["*.onnx"], # 如果你不需要onnx文件,可以过滤掉以节省时间和空间
|
| 49 |
+
)
|
| 50 |
+
print(f"{model_name} 模型下载完毕!")
|
| 51 |
+
else:
|
| 52 |
+
print(f"检测到本地 {model_name} 模型文件,跳过下载。")
|
| 53 |
|
| 54 |
+
# 下载所有需要的模型
|
| 55 |
+
download_model_if_not_exists(FUN_ASR_NANO_REPO_ID, FUN_ASR_NANO_LOCAL_PATH, "Fun-ASR-Nano")
|
| 56 |
+
download_model_if_not_exists(SENSE_VOICE_SMALL_REPO_ID, SENSE_VOICE_SMALL_LOCAL_PATH, "SenseVoiceSmall")
|
| 57 |
+
download_model_if_not_exists(VAD_MODEL_REPO_ID, VAD_MODEL_LOCAL_PATH, "VAD Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
|
| 60 |
|
|
|
|
| 74 |
from funasr import AutoModel
|
| 75 |
from funasr.utils.postprocess_utils import rich_transcription_postprocess
|
| 76 |
|
| 77 |
+
# Model configurations for local deployment
|
| 78 |
FUN_ASR_NANO_MODEL_PATH_LIST = [
|
| 79 |
+
FUN_ASR_NANO_LOCAL_PATH, # local path
|
| 80 |
]
|
| 81 |
|
| 82 |
SENSEVOICE_MODEL_PATH_LIST = [
|
| 83 |
+
SENSE_VOICE_SMALL_LOCAL_PATH, # local path
|
| 84 |
]
|
| 85 |
|
| 86 |
class LogCapture(io.StringIO):
|
|
|
|
| 414 |
# Dictionary to store loaded models
|
| 415 |
loaded_models = {}
|
| 416 |
|
| 417 |
+
@spaces.GPU(duration=40)
|
| 418 |
def transcribe_audio(audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, download_method, start_time=None, end_time=None, verbose=False):
|
| 419 |
"""
|
| 420 |
Transcribes audio from a given source using SenseVoice.
|
|
|
|
| 495 |
model=model_id,
|
| 496 |
trust_remote_code=True,
|
| 497 |
remote_code=f"./Fun-ASR/model.py",
|
| 498 |
+
vad_model=VAD_MODEL_LOCAL_PATH, # Use local VAD model path
|
| 499 |
vad_kwargs={"max_single_segment_time": 30000},
|
| 500 |
device=device,
|
| 501 |
disable_update=True,
|
|
|
|
| 505 |
model = AutoModel(
|
| 506 |
model=model_id,
|
| 507 |
trust_remote_code=False,
|
| 508 |
+
vad_model=VAD_MODEL_LOCAL_PATH, # Use local VAD model path
|
| 509 |
vad_kwargs={"max_single_segment_time": 30000},
|
| 510 |
device=device,
|
| 511 |
disable_update=True,
|