Spaces:
Runtime error
Runtime error
Upload inference.py
Browse files- inference.py +666 -0
inference.py
ADDED
|
@@ -0,0 +1,666 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import lightning as L
|
| 3 |
+
import torch
|
| 4 |
+
import time
|
| 5 |
+
from snac import SNAC
|
| 6 |
+
from litgpt import Tokenizer
|
| 7 |
+
from litgpt.utils import (
|
| 8 |
+
num_parameters,
|
| 9 |
+
)
|
| 10 |
+
from litgpt.generate.base import (
|
| 11 |
+
generate_AA,
|
| 12 |
+
generate_ASR,
|
| 13 |
+
generate_TA,
|
| 14 |
+
generate_TT,
|
| 15 |
+
generate_AT,
|
| 16 |
+
generate_TA_BATCH,
|
| 17 |
+
next_token_batch
|
| 18 |
+
)
|
| 19 |
+
import soundfile as sf
|
| 20 |
+
from litgpt.model import GPT, Config
|
| 21 |
+
from lightning.fabric.utilities.load import _lazy_load as lazy_load
|
| 22 |
+
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str
|
| 23 |
+
from utils.snac_utils import get_snac, generate_audio_data
|
| 24 |
+
import whisper
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from huggingface_hub import snapshot_download
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
torch.set_printoptions(sci_mode=False)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# TODO
|
| 33 |
+
text_vocabsize = 151936
|
| 34 |
+
text_specialtokens = 64
|
| 35 |
+
audio_vocabsize = 4096
|
| 36 |
+
audio_specialtokens = 64
|
| 37 |
+
|
| 38 |
+
padded_text_vocabsize = text_vocabsize + text_specialtokens
|
| 39 |
+
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens
|
| 40 |
+
|
| 41 |
+
_eot = text_vocabsize
|
| 42 |
+
_pad_t = text_vocabsize + 1
|
| 43 |
+
_input_t = text_vocabsize + 2
|
| 44 |
+
_answer_t = text_vocabsize + 3
|
| 45 |
+
_asr = text_vocabsize + 4
|
| 46 |
+
|
| 47 |
+
_eoa = audio_vocabsize
|
| 48 |
+
_pad_a = audio_vocabsize + 1
|
| 49 |
+
_input_a = audio_vocabsize + 2
|
| 50 |
+
_answer_a = audio_vocabsize + 3
|
| 51 |
+
_split = audio_vocabsize + 4
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_input_ids_TA(text, text_tokenizer):
|
| 55 |
+
input_ids_item = [[] for _ in range(8)]
|
| 56 |
+
text_tokens = text_tokenizer.encode(text)
|
| 57 |
+
for i in range(7):
|
| 58 |
+
input_ids_item[i] = [layershift(_pad_a, i)] * (len(text_tokens) + 2) + [
|
| 59 |
+
layershift(_answer_a, i)
|
| 60 |
+
]
|
| 61 |
+
input_ids_item[i] = torch.tensor(input_ids_item[i]).unsqueeze(0)
|
| 62 |
+
input_ids_item[-1] = [_input_t] + text_tokens.tolist() + [_eot] + [_answer_t]
|
| 63 |
+
input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0)
|
| 64 |
+
return input_ids_item
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_input_ids_TT(text, text_tokenizer):
|
| 68 |
+
input_ids_item = [[] for i in range(8)]
|
| 69 |
+
text_tokens = text_tokenizer.encode(text).tolist()
|
| 70 |
+
|
| 71 |
+
for i in range(7):
|
| 72 |
+
input_ids_item[i] = torch.tensor(
|
| 73 |
+
[layershift(_pad_a, i)] * (len(text_tokens) + 3)
|
| 74 |
+
).unsqueeze(0)
|
| 75 |
+
input_ids_item[-1] = [_input_t] + text_tokens + [_eot] + [_answer_t]
|
| 76 |
+
input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0)
|
| 77 |
+
|
| 78 |
+
return input_ids_item
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def get_input_ids_whisper(
|
| 82 |
+
mel, leng, whispermodel, device,
|
| 83 |
+
special_token_a=_answer_a, special_token_t=_answer_t,
|
| 84 |
+
):
|
| 85 |
+
|
| 86 |
+
with torch.no_grad():
|
| 87 |
+
mel = mel.unsqueeze(0).to(device)
|
| 88 |
+
# audio_feature = whisper.decode(whispermodel,mel, options).audio_features
|
| 89 |
+
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
|
| 90 |
+
|
| 91 |
+
T = audio_feature.size(0)
|
| 92 |
+
input_ids = []
|
| 93 |
+
for i in range(7):
|
| 94 |
+
input_ids_item = []
|
| 95 |
+
input_ids_item.append(layershift(_input_a, i))
|
| 96 |
+
input_ids_item += [layershift(_pad_a, i)] * T
|
| 97 |
+
input_ids_item += [(layershift(_eoa, i)), layershift(special_token_a, i)]
|
| 98 |
+
input_ids.append(torch.tensor(input_ids_item).unsqueeze(0))
|
| 99 |
+
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, special_token_t])
|
| 100 |
+
input_ids.append(input_id_T.unsqueeze(0))
|
| 101 |
+
return audio_feature.unsqueeze(0), input_ids
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device):
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
mel = mel.unsqueeze(0).to(device)
|
| 107 |
+
# audio_feature = whisper.decode(whispermodel,mel, options).audio_features
|
| 108 |
+
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
|
| 109 |
+
T = audio_feature.size(0)
|
| 110 |
+
input_ids_AA = []
|
| 111 |
+
for i in range(7):
|
| 112 |
+
input_ids_item = []
|
| 113 |
+
input_ids_item.append(layershift(_input_a, i))
|
| 114 |
+
input_ids_item += [layershift(_pad_a, i)] * T
|
| 115 |
+
input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)]
|
| 116 |
+
input_ids_AA.append(torch.tensor(input_ids_item))
|
| 117 |
+
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
|
| 118 |
+
input_ids_AA.append(input_id_T)
|
| 119 |
+
|
| 120 |
+
input_ids_AT = []
|
| 121 |
+
for i in range(7):
|
| 122 |
+
input_ids_item = []
|
| 123 |
+
input_ids_item.append(layershift(_input_a, i))
|
| 124 |
+
input_ids_item += [layershift(_pad_a, i)] * T
|
| 125 |
+
input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)]
|
| 126 |
+
input_ids_AT.append(torch.tensor(input_ids_item))
|
| 127 |
+
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
|
| 128 |
+
input_ids_AT.append(input_id_T)
|
| 129 |
+
|
| 130 |
+
input_ids = [input_ids_AA, input_ids_AT]
|
| 131 |
+
stacked_inputids = [[] for _ in range(8)]
|
| 132 |
+
for i in range(2):
|
| 133 |
+
for j in range(8):
|
| 134 |
+
stacked_inputids[j].append(input_ids[i][j])
|
| 135 |
+
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids]
|
| 136 |
+
return torch.stack([audio_feature, audio_feature]), stacked_inputids
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def load_audio(path):
|
| 140 |
+
audio = whisper.load_audio(path)
|
| 141 |
+
duration_ms = (len(audio) / 16000) * 1000
|
| 142 |
+
audio = whisper.pad_or_trim(audio)
|
| 143 |
+
mel = whisper.log_mel_spectrogram(audio)
|
| 144 |
+
return mel, int(duration_ms / 20) + 1
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def A1_A2_batch(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step,
|
| 148 |
+
snacmodel, out_dir=None):
|
| 149 |
+
with fabric.init_tensor():
|
| 150 |
+
model.set_kv_cache(batch_size=2)
|
| 151 |
+
tokenlist = generate_TA_BATCH(
|
| 152 |
+
model,
|
| 153 |
+
audio_feature,
|
| 154 |
+
input_ids,
|
| 155 |
+
[leng, leng],
|
| 156 |
+
["A1A2", "A1T2"],
|
| 157 |
+
max_returned_tokens=2048,
|
| 158 |
+
temperature=0.9,
|
| 159 |
+
top_k=1,
|
| 160 |
+
eos_id_a=_eoa,
|
| 161 |
+
eos_id_t=_eot,
|
| 162 |
+
pad_id_t=_pad_t,
|
| 163 |
+
shift=padded_text_vocabsize,
|
| 164 |
+
include_prompt=True,
|
| 165 |
+
generate_text=True,
|
| 166 |
+
)
|
| 167 |
+
text_tokenlist = tokenlist[-1]
|
| 168 |
+
if text_vocabsize in text_tokenlist:
|
| 169 |
+
text_tokenlist = text_tokenlist[: text_tokenlist.index(text_vocabsize)]
|
| 170 |
+
text = text_tokenizer.decode(torch.tensor(text_tokenlist)).strip()
|
| 171 |
+
|
| 172 |
+
audio_tokenlist = tokenlist[:-1]
|
| 173 |
+
audiolist = reconscruct_snac(audio_tokenlist)
|
| 174 |
+
audio = reconstruct_tensors(audiolist)
|
| 175 |
+
if out_dir is None:
|
| 176 |
+
out_dir = "./output/default/A1-A2-batch"
|
| 177 |
+
else:
|
| 178 |
+
out_dir = out_dir + "/A1-A2-batch"
|
| 179 |
+
if not os.path.exists(out_dir):
|
| 180 |
+
os.makedirs(out_dir)
|
| 181 |
+
with torch.inference_mode():
|
| 182 |
+
audio_hat = snacmodel.decode(audio)
|
| 183 |
+
sf.write(
|
| 184 |
+
f"{out_dir}/{step:02d}.wav",
|
| 185 |
+
audio_hat.squeeze().cpu().numpy(),
|
| 186 |
+
24000,
|
| 187 |
+
)
|
| 188 |
+
model.clear_kv_cache()
|
| 189 |
+
return text
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def A1_T2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step):
|
| 193 |
+
with fabric.init_tensor():
|
| 194 |
+
model.set_kv_cache(batch_size=1)
|
| 195 |
+
tokenlist = generate_AT(
|
| 196 |
+
model,
|
| 197 |
+
audio_feature,
|
| 198 |
+
input_ids,
|
| 199 |
+
[leng],
|
| 200 |
+
["AT"],
|
| 201 |
+
max_returned_tokens=2048,
|
| 202 |
+
temperature=0.9,
|
| 203 |
+
top_k=1,
|
| 204 |
+
eos_id_a=_eoa,
|
| 205 |
+
eos_id_t=_eot,
|
| 206 |
+
pad_id_t=_pad_t,
|
| 207 |
+
shift=padded_text_vocabsize,
|
| 208 |
+
include_prompt=True,
|
| 209 |
+
generate_text=True,
|
| 210 |
+
)
|
| 211 |
+
return text_tokenizer.decode(torch.tensor(tokenlist)).strip()
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def A1_A2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step,
|
| 215 |
+
snacmodel, out_dir=None):
|
| 216 |
+
with fabric.init_tensor():
|
| 217 |
+
model.set_kv_cache(batch_size=1)
|
| 218 |
+
tokenlist = generate_AA(
|
| 219 |
+
model,
|
| 220 |
+
audio_feature,
|
| 221 |
+
input_ids,
|
| 222 |
+
[leng],
|
| 223 |
+
["A1T2"],
|
| 224 |
+
max_returned_tokens=2048,
|
| 225 |
+
temperature=0.9,
|
| 226 |
+
top_k=1,
|
| 227 |
+
eos_id_a=_eoa,
|
| 228 |
+
eos_id_t=_eot,
|
| 229 |
+
pad_id_t=_pad_t,
|
| 230 |
+
shift=padded_text_vocabsize,
|
| 231 |
+
include_prompt=True,
|
| 232 |
+
generate_text=True,
|
| 233 |
+
)
|
| 234 |
+
audiolist = reconscruct_snac(tokenlist)
|
| 235 |
+
tokenlist = tokenlist[-1]
|
| 236 |
+
if text_vocabsize in tokenlist:
|
| 237 |
+
tokenlist = tokenlist[: tokenlist.index(text_vocabsize)]
|
| 238 |
+
if out_dir is None:
|
| 239 |
+
out_dir = "./output/default/A1-A2"
|
| 240 |
+
else:
|
| 241 |
+
out_dir = out_dir + "/A1-A2"
|
| 242 |
+
if not os.path.exists(out_dir):
|
| 243 |
+
os.makedirs(out_dir)
|
| 244 |
+
|
| 245 |
+
audio = reconstruct_tensors(audiolist)
|
| 246 |
+
with torch.inference_mode():
|
| 247 |
+
audio_hat = snacmodel.decode(audio)
|
| 248 |
+
sf.write(
|
| 249 |
+
f"{out_dir}/{step:02d}.wav",
|
| 250 |
+
audio_hat.squeeze().cpu().numpy(),
|
| 251 |
+
24000,
|
| 252 |
+
)
|
| 253 |
+
model.clear_kv_cache()
|
| 254 |
+
return text_tokenizer.decode(torch.tensor(tokenlist)).strip()
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def A1_T1(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step):
|
| 258 |
+
with fabric.init_tensor():
|
| 259 |
+
model.set_kv_cache(batch_size=1)
|
| 260 |
+
tokenlist = generate_ASR(
|
| 261 |
+
model,
|
| 262 |
+
audio_feature,
|
| 263 |
+
input_ids,
|
| 264 |
+
[leng],
|
| 265 |
+
["A1T1"],
|
| 266 |
+
max_returned_tokens=2048,
|
| 267 |
+
temperature=0.9,
|
| 268 |
+
top_k=1,
|
| 269 |
+
eos_id_a=_eoa,
|
| 270 |
+
eos_id_t=_eot,
|
| 271 |
+
pad_id_t=_pad_t,
|
| 272 |
+
shift=padded_text_vocabsize,
|
| 273 |
+
include_prompt=True,
|
| 274 |
+
generate_text=True,
|
| 275 |
+
)
|
| 276 |
+
model.clear_kv_cache()
|
| 277 |
+
return text_tokenizer.decode(torch.tensor(tokenlist)).strip()
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def T1_A2(fabric, input_ids, model, text_tokenizer, step,
|
| 281 |
+
snacmodel, out_dir=None):
|
| 282 |
+
with fabric.init_tensor():
|
| 283 |
+
model.set_kv_cache(batch_size=1)
|
| 284 |
+
tokenlist = generate_TA(
|
| 285 |
+
model,
|
| 286 |
+
None,
|
| 287 |
+
input_ids,
|
| 288 |
+
None,
|
| 289 |
+
["T1A2"],
|
| 290 |
+
max_returned_tokens=2048,
|
| 291 |
+
temperature=0.9,
|
| 292 |
+
top_k=1,
|
| 293 |
+
eos_id_a=_eoa,
|
| 294 |
+
eos_id_t=_eot,
|
| 295 |
+
pad_id_t=_pad_t,
|
| 296 |
+
shift=padded_text_vocabsize,
|
| 297 |
+
include_prompt=True,
|
| 298 |
+
generate_text=True,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
audiolist = reconscruct_snac(tokenlist)
|
| 302 |
+
tokenlist = tokenlist[-1]
|
| 303 |
+
|
| 304 |
+
if text_vocabsize in tokenlist:
|
| 305 |
+
tokenlist = tokenlist[: tokenlist.index(text_vocabsize)]
|
| 306 |
+
audio = reconstruct_tensors(audiolist)
|
| 307 |
+
if out_dir is None:
|
| 308 |
+
out_dir = "./output/default/T1-A2"
|
| 309 |
+
else:
|
| 310 |
+
out_dir = out_dir + "/T1-A2"
|
| 311 |
+
if not os.path.exists(out_dir):
|
| 312 |
+
os.makedirs(out_dir)
|
| 313 |
+
|
| 314 |
+
with torch.inference_mode():
|
| 315 |
+
audio_hat = snacmodel.decode(audio)
|
| 316 |
+
sf.write(
|
| 317 |
+
f"{out_dir}/{step:02d}.wav",
|
| 318 |
+
audio_hat.squeeze().cpu().numpy(),
|
| 319 |
+
24000,
|
| 320 |
+
)
|
| 321 |
+
model.clear_kv_cache()
|
| 322 |
+
return text_tokenizer.decode(torch.tensor(tokenlist)).strip()
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def T1_T2(fabric, input_ids, model, text_tokenizer, step):
|
| 326 |
+
|
| 327 |
+
with fabric.init_tensor():
|
| 328 |
+
model.set_kv_cache(batch_size=1)
|
| 329 |
+
tokenlist = generate_TT(
|
| 330 |
+
model,
|
| 331 |
+
None,
|
| 332 |
+
input_ids,
|
| 333 |
+
None,
|
| 334 |
+
["T1T2"],
|
| 335 |
+
max_returned_tokens=2048,
|
| 336 |
+
temperature=0.9,
|
| 337 |
+
top_k=1,
|
| 338 |
+
eos_id_a=_eoa,
|
| 339 |
+
eos_id_t=_eot,
|
| 340 |
+
pad_id_t=_pad_t,
|
| 341 |
+
shift=padded_text_vocabsize,
|
| 342 |
+
include_prompt=True,
|
| 343 |
+
generate_text=True,
|
| 344 |
+
)
|
| 345 |
+
model.clear_kv_cache()
|
| 346 |
+
return text_tokenizer.decode(torch.tensor(tokenlist)).strip()
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def load_model(ckpt_dir, device):
|
| 350 |
+
snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
|
| 351 |
+
whispermodel = whisper.load_model("small").to(device)
|
| 352 |
+
text_tokenizer = Tokenizer(ckpt_dir)
|
| 353 |
+
fabric = L.Fabric(devices=1, strategy="auto")
|
| 354 |
+
config = Config.from_file(ckpt_dir + "/model_config.yaml")
|
| 355 |
+
config.post_adapter = False
|
| 356 |
+
|
| 357 |
+
with fabric.init_module(empty_init=False):
|
| 358 |
+
model = GPT(config)
|
| 359 |
+
|
| 360 |
+
model = fabric.setup(model)
|
| 361 |
+
state_dict = lazy_load(ckpt_dir + "/lit_model.pth")
|
| 362 |
+
model.load_state_dict(state_dict, strict=True)
|
| 363 |
+
model.to(device).eval()
|
| 364 |
+
|
| 365 |
+
return fabric, model, text_tokenizer, snacmodel, whispermodel
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
def download_model(ckpt_dir):
|
| 369 |
+
repo_id = "gpt-omni/mini-omni"
|
| 370 |
+
snapshot_download(repo_id, local_dir=ckpt_dir, revision="main")
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
class OmniInference:
|
| 374 |
+
|
| 375 |
+
def __init__(self, ckpt_dir='./checkpoint', device='cuda:0'):
|
| 376 |
+
self.device = device
|
| 377 |
+
if not os.path.exists(ckpt_dir):
|
| 378 |
+
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
|
| 379 |
+
download_model(ckpt_dir)
|
| 380 |
+
self.fabric, self.model, self.text_tokenizer, self.snacmodel, self.whispermodel = load_model(ckpt_dir, device)
|
| 381 |
+
|
| 382 |
+
def warm_up(self, sample='./data/samples/output1.wav'):
|
| 383 |
+
for _ in self.run_AT_batch_stream(sample):
|
| 384 |
+
pass
|
| 385 |
+
|
| 386 |
+
@torch.inference_mode()
|
| 387 |
+
def run_AT_batch_stream(self,
|
| 388 |
+
audio_path,
|
| 389 |
+
stream_stride=4,
|
| 390 |
+
max_returned_tokens=2048,
|
| 391 |
+
temperature=0.9,
|
| 392 |
+
top_k=1,
|
| 393 |
+
top_p=1.0,
|
| 394 |
+
eos_id_a=_eoa,
|
| 395 |
+
eos_id_t=_eot,
|
| 396 |
+
):
|
| 397 |
+
|
| 398 |
+
assert os.path.exists(audio_path), f"audio file {audio_path} not found"
|
| 399 |
+
model = self.model
|
| 400 |
+
|
| 401 |
+
with self.fabric.init_tensor():
|
| 402 |
+
model.set_kv_cache(batch_size=2,device=self.device)
|
| 403 |
+
|
| 404 |
+
mel, leng = load_audio(audio_path)
|
| 405 |
+
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, self.whispermodel, self.device)
|
| 406 |
+
T = input_ids[0].size(1)
|
| 407 |
+
device = input_ids[0].device
|
| 408 |
+
|
| 409 |
+
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}"
|
| 410 |
+
|
| 411 |
+
if model.max_seq_length < max_returned_tokens - 1:
|
| 412 |
+
raise NotImplementedError(
|
| 413 |
+
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
input_pos = torch.tensor([T], device=device)
|
| 417 |
+
list_output = [[] for i in range(8)]
|
| 418 |
+
tokens_A, token_T = next_token_batch(
|
| 419 |
+
model,
|
| 420 |
+
audio_feature.to(torch.float32).to(model.device),
|
| 421 |
+
input_ids,
|
| 422 |
+
[T - 3, T - 3],
|
| 423 |
+
["A1T2", "A1T2"],
|
| 424 |
+
input_pos=torch.arange(0, T, device=device),
|
| 425 |
+
temperature=temperature,
|
| 426 |
+
top_k=top_k,
|
| 427 |
+
top_p=top_p,
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
for i in range(7):
|
| 431 |
+
list_output[i].append(tokens_A[i].tolist()[0])
|
| 432 |
+
list_output[7].append(token_T.tolist()[0])
|
| 433 |
+
|
| 434 |
+
model_input_ids = [[] for i in range(8)]
|
| 435 |
+
for i in range(7):
|
| 436 |
+
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize
|
| 437 |
+
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
|
| 438 |
+
model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device))
|
| 439 |
+
model_input_ids[i] = torch.stack(model_input_ids[i])
|
| 440 |
+
|
| 441 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
| 442 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
| 443 |
+
model_input_ids[-1] = torch.stack(model_input_ids[-1])
|
| 444 |
+
|
| 445 |
+
text_end = False
|
| 446 |
+
index = 1
|
| 447 |
+
nums_generate = stream_stride
|
| 448 |
+
begin_generate = False
|
| 449 |
+
current_index = 0
|
| 450 |
+
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
|
| 451 |
+
tokens_A, token_T = next_token_batch(
|
| 452 |
+
model,
|
| 453 |
+
None,
|
| 454 |
+
model_input_ids,
|
| 455 |
+
None,
|
| 456 |
+
None,
|
| 457 |
+
input_pos=input_pos,
|
| 458 |
+
temperature=temperature,
|
| 459 |
+
top_k=top_k,
|
| 460 |
+
top_p=top_p,
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
if text_end:
|
| 464 |
+
token_T = torch.tensor([_pad_t], device=device)
|
| 465 |
+
|
| 466 |
+
if tokens_A[-1] == eos_id_a:
|
| 467 |
+
break
|
| 468 |
+
|
| 469 |
+
if token_T == eos_id_t:
|
| 470 |
+
text_end = True
|
| 471 |
+
|
| 472 |
+
for i in range(7):
|
| 473 |
+
list_output[i].append(tokens_A[i].tolist()[0])
|
| 474 |
+
list_output[7].append(token_T.tolist()[0])
|
| 475 |
+
|
| 476 |
+
model_input_ids = [[] for i in range(8)]
|
| 477 |
+
for i in range(7):
|
| 478 |
+
tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize
|
| 479 |
+
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
|
| 480 |
+
model_input_ids[i].append(
|
| 481 |
+
torch.tensor([layershift(4097, i)], device=device)
|
| 482 |
+
)
|
| 483 |
+
model_input_ids[i] = torch.stack(model_input_ids[i])
|
| 484 |
+
|
| 485 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
| 486 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
| 487 |
+
model_input_ids[-1] = torch.stack(model_input_ids[-1])
|
| 488 |
+
|
| 489 |
+
if index == 7:
|
| 490 |
+
begin_generate = True
|
| 491 |
+
|
| 492 |
+
if begin_generate:
|
| 493 |
+
current_index += 1
|
| 494 |
+
if current_index == nums_generate:
|
| 495 |
+
current_index = 0
|
| 496 |
+
snac = get_snac(list_output, index, nums_generate)
|
| 497 |
+
audio_stream = generate_audio_data(snac, self.snacmodel, self.device)
|
| 498 |
+
yield audio_stream
|
| 499 |
+
|
| 500 |
+
input_pos = input_pos.add_(1)
|
| 501 |
+
index += 1
|
| 502 |
+
text = self.text_tokenizer.decode(torch.tensor(list_output[-1]))
|
| 503 |
+
print(f"text output: {text}")
|
| 504 |
+
model.clear_kv_cache()
|
| 505 |
+
return list_output
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
def test_infer():
|
| 509 |
+
device = "cuda:0"
|
| 510 |
+
out_dir = f"./output/{get_time_str()}"
|
| 511 |
+
ckpt_dir = f"./checkpoint"
|
| 512 |
+
if not os.path.exists(ckpt_dir):
|
| 513 |
+
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
|
| 514 |
+
download_model(ckpt_dir)
|
| 515 |
+
|
| 516 |
+
fabric, model, text_tokenizer, snacmodel, whispermodel = load_model(ckpt_dir, device)
|
| 517 |
+
|
| 518 |
+
task = ['A1A2', 'asr', "T1A2", "AA-BATCH", 'T1T2', 'AT']
|
| 519 |
+
|
| 520 |
+
# prepare test data
|
| 521 |
+
# TODO
|
| 522 |
+
test_audio_list = sorted(os.listdir('./data/samples'))
|
| 523 |
+
test_audio_list = [os.path.join('./data/samples', path) for path in test_audio_list]
|
| 524 |
+
test_audio_transcripts = [
|
| 525 |
+
"What is your name?",
|
| 526 |
+
"what are your hobbies?",
|
| 527 |
+
"Do you like beijing",
|
| 528 |
+
"How are you feeling today?",
|
| 529 |
+
"what is the weather like today?",
|
| 530 |
+
]
|
| 531 |
+
test_text_list = [
|
| 532 |
+
"What is your name?",
|
| 533 |
+
"How are you feeling today?",
|
| 534 |
+
"Can you describe your surroundings?",
|
| 535 |
+
"What did you do yesterday?",
|
| 536 |
+
"What is your favorite book and why?",
|
| 537 |
+
"How do you make a cup of tea?",
|
| 538 |
+
"What is the weather like today?",
|
| 539 |
+
"Can you explain the concept of time?",
|
| 540 |
+
"Can you tell me a joke?",
|
| 541 |
+
]
|
| 542 |
+
|
| 543 |
+
# LOAD MODEL
|
| 544 |
+
with torch.no_grad():
|
| 545 |
+
if "A1A2" in task:
|
| 546 |
+
print("===============================================================")
|
| 547 |
+
print(" testing A1A2")
|
| 548 |
+
print("===============================================================")
|
| 549 |
+
step = 0
|
| 550 |
+
for path in test_audio_list:
|
| 551 |
+
try:
|
| 552 |
+
mel, leng = load_audio(path)
|
| 553 |
+
audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device)
|
| 554 |
+
text = A1_A2(
|
| 555 |
+
fabric,
|
| 556 |
+
audio_feature,
|
| 557 |
+
input_ids,
|
| 558 |
+
leng,
|
| 559 |
+
model,
|
| 560 |
+
text_tokenizer,
|
| 561 |
+
step,
|
| 562 |
+
snacmodel,
|
| 563 |
+
out_dir=out_dir,
|
| 564 |
+
)
|
| 565 |
+
print(f"input: {test_audio_transcripts[step]}")
|
| 566 |
+
print(f"output: {text}")
|
| 567 |
+
step += 1
|
| 568 |
+
print(
|
| 569 |
+
"+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
|
| 570 |
+
)
|
| 571 |
+
except:
|
| 572 |
+
print(f"[error] failed to process {path}")
|
| 573 |
+
print("===============================================================")
|
| 574 |
+
|
| 575 |
+
if 'asr' in task:
|
| 576 |
+
print("===============================================================")
|
| 577 |
+
print(" testing asr")
|
| 578 |
+
print("===============================================================")
|
| 579 |
+
|
| 580 |
+
index = 0
|
| 581 |
+
step = 0
|
| 582 |
+
for path in test_audio_list:
|
| 583 |
+
mel, leng = load_audio(path)
|
| 584 |
+
audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device, special_token_a=_pad_a, special_token_t=_asr)
|
| 585 |
+
output = A1_T1(fabric, audio_feature, input_ids ,leng, model, text_tokenizer, index).lower().replace(',','').replace('.','').replace('?','')
|
| 586 |
+
print(f"audio_path: {path}")
|
| 587 |
+
print(f"audio transcript: {test_audio_transcripts[index]}")
|
| 588 |
+
print(f"asr output: {output}")
|
| 589 |
+
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
|
| 590 |
+
index += 1
|
| 591 |
+
|
| 592 |
+
if "T1A2" in task:
|
| 593 |
+
step = 0
|
| 594 |
+
print("\n")
|
| 595 |
+
print("===============================================================")
|
| 596 |
+
print(" testing T1A2")
|
| 597 |
+
print("===============================================================")
|
| 598 |
+
for text in test_text_list:
|
| 599 |
+
input_ids = get_input_ids_TA(text, text_tokenizer)
|
| 600 |
+
text_output = T1_A2(fabric, input_ids, model, text_tokenizer, step,
|
| 601 |
+
snacmodel, out_dir=out_dir)
|
| 602 |
+
print(f"input: {text}")
|
| 603 |
+
print(f"output: {text_output}")
|
| 604 |
+
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
|
| 605 |
+
step += 1
|
| 606 |
+
print("===============================================================")
|
| 607 |
+
|
| 608 |
+
if "T1T2" in task:
|
| 609 |
+
step = 0
|
| 610 |
+
print("\n")
|
| 611 |
+
print("===============================================================")
|
| 612 |
+
print(" testing T1T2")
|
| 613 |
+
print("===============================================================")
|
| 614 |
+
|
| 615 |
+
for text in test_text_list:
|
| 616 |
+
input_ids = get_input_ids_TT(text, text_tokenizer)
|
| 617 |
+
text_output = T1_T2(fabric, input_ids, model, text_tokenizer, step)
|
| 618 |
+
print(f" Input: {text}")
|
| 619 |
+
print(f"Output: {text_output}")
|
| 620 |
+
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
|
| 621 |
+
print("===============================================================")
|
| 622 |
+
|
| 623 |
+
if "AT" in task:
|
| 624 |
+
print("===============================================================")
|
| 625 |
+
print(" testing A1T2")
|
| 626 |
+
print("===============================================================")
|
| 627 |
+
step = 0
|
| 628 |
+
for path in test_audio_list:
|
| 629 |
+
mel, leng = load_audio(path)
|
| 630 |
+
audio_feature, input_ids = get_input_ids_whisper(
|
| 631 |
+
mel, leng, whispermodel, device,
|
| 632 |
+
special_token_a=_pad_a, special_token_t=_answer_t
|
| 633 |
+
)
|
| 634 |
+
text = A1_T2(
|
| 635 |
+
fabric, audio_feature, input_ids, leng, model, text_tokenizer, step
|
| 636 |
+
)
|
| 637 |
+
print(f"input: {test_audio_transcripts[step]}")
|
| 638 |
+
print(f"output: {text}")
|
| 639 |
+
step += 1
|
| 640 |
+
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
|
| 641 |
+
print("===============================================================")
|
| 642 |
+
|
| 643 |
+
if "AA-BATCH" in task:
|
| 644 |
+
print("===============================================================")
|
| 645 |
+
print(" testing A1A2-BATCH")
|
| 646 |
+
print("===============================================================")
|
| 647 |
+
step = 0
|
| 648 |
+
for path in test_audio_list:
|
| 649 |
+
mel, leng = load_audio(path)
|
| 650 |
+
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device)
|
| 651 |
+
text = A1_A2_batch(
|
| 652 |
+
fabric, audio_feature, input_ids, leng, model, text_tokenizer, step,
|
| 653 |
+
snacmodel, out_dir=out_dir
|
| 654 |
+
)
|
| 655 |
+
print(f"input: {test_audio_transcripts[step]}")
|
| 656 |
+
print(f"output: {text}")
|
| 657 |
+
step += 1
|
| 658 |
+
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
|
| 659 |
+
print("===============================================================")
|
| 660 |
+
|
| 661 |
+
print("*********************** test end *****************************")
|
| 662 |
+
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
if __name__ == "__main__":
|
| 666 |
+
test_infer()
|