|
import torch
|
|
from diffusers import FluxImg2ImgPipeline
|
|
|
|
from PIL import Image
|
|
import sys
|
|
import spaces
|
|
|
|
|
|
|
|
@spaces.GPU
|
|
def process_image(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4):
|
|
print("start process image process_image")
|
|
if image == None:
|
|
print("empty input image returned")
|
|
return None
|
|
|
|
pipe = FluxImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
|
pipe.to("cuda")
|
|
|
|
generators = []
|
|
generator = torch.Generator("cuda").manual_seed(seed)
|
|
generators.append(generator)
|
|
|
|
print(prompt)
|
|
output = pipe(prompt=prompt, image=image,generator=generator,strength=strength
|
|
,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
|
|
|
|
|
|
return output.images[0]
|
|
|
|
if __name__ == "__main__":
|
|
|
|
image = Image.open(sys.argv[1])
|
|
mask = Image.open(sys.argv[2])
|
|
output = process_image(image,mask)
|
|
output.save(sys.argv[3]) |