import gradio as gr import numpy as np import random import torch import spaces from PIL import Image from diffusers import FlowMatchEulerDiscreteScheduler from optimization import optimize_pipeline_ from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 from huggingface_hub import InferenceClient import math from huggingface_hub import hf_hub_download from safetensors.torch import load_file import os import base64 from io import BytesIO import json import time # Added for history update delay from gradio_client import Client, handle_file import tempfile from PIL import Image import os import gradio as gr def encode_image(pil_image): import io buffered = io.BytesIO() pil_image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode("utf-8") # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", subfolder='transformer', torch_dtype=dtype, device_map='cuda'),torch_dtype=dtype).to(device) pipe.load_lora_weights( "lovis93/next-scene-qwen-image-lora-2509", weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene" ) pipe.set_adapters(["next-scene"], adapter_weights=[1.]) pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.) pipe.unload_lora_weights() # Apply the same optimizations from the first version pipe.transformer.__class__ = QwenImageTransformer2DModel pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) # --- Ahead-of-time compilation --- optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") # --- UI Constants and Helpers --- MAX_SEED = np.iinfo(np.int32).max def use_output_as_input(output_images): """Convert output images to input format for the gallery""" if output_images is None or len(output_images) == 0: return [] return output_images # --- Main Inference Function (with hardcoded negative prompt) --- @spaces.GPU(duration=120) def infer( image, prompt, seed=120, randomize_seed=False, true_guidance_scale=1.0, num_inference_steps=4, progress=gr.Progress(track_tqdm=True), ): """ Generates an image using the local Qwen-Image diffusers pipeline. """ # Hardcode the negative prompt as requested negative_prompt = " " if randomize_seed: seed = random.randint(0, MAX_SEED) # Set up the generator for reproducibility generator = torch.Generator(device=device).manual_seed(seed) print(f"Calling pipeline with prompt: '{prompt}'") print(f"Negative Prompt: '{negative_prompt}'") print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}") # Generate the image images = pipe( image, prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=true_guidance_scale, num_images_per_prompt=1 ).images return images[0], seed # --- Examples and UI Layout --- examples = [] css = """ #col-container { margin: 0 auto; max-width: 1024px; } #edit_text{ margin-top: -62px !important } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML('Qwen-Image Logo') gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", show_label=False, type="pil") result = gr.Image(label="Result", show_label=False, type="pil") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, placeholder="describe the edit instruction", container=False, ) run_button = gr.Button("Edit!", variant="primary") with gr.Accordion("Advanced Settings", open=False): # Negative prompt UI element is removed here seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): true_guidance_scale = gr.Slider( label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0 ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=6, ) gr.Examples(examples=[ ["neon_sign.png", "change the text to read 'Qwen Image Edit is here'"], ["cat_sitting.jpg", "make the cat floating in the air and holding a sign that reads 'this is fun' written with a blue crayon"], ["pie.png", "turn the style of the photo to vintage comic book"]], inputs=[input_image, prompt], outputs=[result, seed], fn=infer, cache_examples="lazy") gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ input_image, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()