Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# | |
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang) | |
# | |
# See LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# References: | |
# https://gradio.app/docs/#dropdown | |
import logging | |
import os | |
from pathlib import Path | |
import gradio as gr | |
from decode import decode | |
from model import get_pretrained_model, get_vad, language_to_models | |
title = "# Next-gen Kaldi: Generate subtitles for videos" | |
description = """ | |
This space shows how to generate subtitles/captions with Next-gen Kaldi. | |
It is running on CPU within a docker container provided by Hugging Face. | |
Please find test video files at | |
<https://huggingface.co/csukuangfj/vad/tree/main> | |
See more information by visiting the following links: | |
- <https://github.com/k2-fsa/sherpa-onnx> | |
- <https://github.com/k2-fsa/icefall> | |
- <https://github.com/k2-fsa/k2> | |
- <https://github.com/lhotse-speech/lhotse> | |
If you want to deploy it locally, please see | |
<https://k2-fsa.github.io/sherpa/> | |
""" | |
# css style is copied from | |
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 | |
css = """ | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""" | |
def update_model_dropdown(language: str): | |
if language in language_to_models: | |
choices = language_to_models[language] | |
return gr.Dropdown( | |
choices=choices, | |
value=choices[0], | |
interactive=True, | |
) | |
raise ValueError(f"Unsupported language: {language}") | |
def build_html_output(s: str, style: str = "result_item_success"): | |
return f""" | |
<div class='result'> | |
<div class='result_item {style}'> | |
{s} | |
</div> | |
</div> | |
""" | |
def show_file_info(in_filename: str): | |
logging.info(f"Input file: {in_filename}") | |
_ = os.system(f"ffprobe -hide_banner -i '{in_filename}'") | |
def process_uploaded_video_file( | |
language: str, | |
repo_id: str, | |
in_filename: str, | |
): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first upload a file and then click " | |
'the button "submit for recognition"', | |
"result_item_error", | |
) | |
logging.info(f"Processing uploaded file: {in_filename}") | |
ans = process(language, repo_id, in_filename) | |
return (in_filename, ans[0]), ans[0], ans[1], ans[2] | |
def process_uploaded_audio_file( | |
language: str, | |
repo_id: str, | |
in_filename: str, | |
): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first upload a file and then click " | |
'the button "submit for recognition"', | |
"result_item_error", | |
) | |
logging.info(f"Processing uploaded file: {in_filename}") | |
return process(language, repo_id, in_filename) | |
def process(language: str, repo_id: str, in_filename: str): | |
recognizer = get_pretrained_model(repo_id) | |
vad = get_vad() | |
result = decode(recognizer, vad, in_filename) | |
logging.info(result) | |
srt_filename = Path(in_filename).with_suffix(".srt") | |
with open(srt_filename, "w", encoding="utf-8") as f: | |
f.write(result) | |
show_file_info(in_filename) | |
logging.info("Done") | |
return ( | |
srt_filename, | |
build_html_output("Done! Please download the SRT file", "result_item_success"), | |
result, | |
) | |
demo = gr.Blocks(css=css) | |
with demo: | |
gr.Markdown(title) | |
language_choices = list(language_to_models.keys()) | |
language_radio = gr.Radio( | |
label="Language", | |
choices=language_choices, | |
value=language_choices[0], | |
) | |
model_dropdown = gr.Dropdown( | |
choices=language_to_models[language_choices[0]], | |
label="Select a model", | |
value=language_to_models[language_choices[0]][0], | |
) | |
language_radio.change( | |
update_model_dropdown, | |
inputs=language_radio, | |
outputs=model_dropdown, | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Upload video from disk"): | |
uploaded_video_file = gr.Video( | |
sources=["upload"], | |
label="Upload from disk", | |
show_share_button=True, | |
) | |
upload_video_button = gr.Button("Submit for recognition") | |
output_video = gr.Video(label="Output") | |
output_srt_file_video = gr.File( | |
label="Generated subtitles", show_label=True | |
) | |
output_info_video = gr.HTML(label="Info") | |
output_textbox_video = gr.Textbox( | |
label="Recognized speech from uploaded video file" | |
) | |
with gr.TabItem("Upload audio from disk"): | |
uploaded_audio_file = gr.Audio( | |
sources=["upload"], # Choose between "microphone", "upload" | |
type="filepath", | |
label="Upload audio from disk", | |
) | |
upload_audio_button = gr.Button("Submit for recognition") | |
output_srt_file_audio = gr.File( | |
label="Generated subtitles", show_label=True | |
) | |
output_info_audio = gr.HTML(label="Info") | |
output_textbox_audio = gr.Textbox( | |
label="Recognized speech from uploaded audio file" | |
) | |
upload_video_button.click( | |
process_uploaded_video_file, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
uploaded_video_file, | |
], | |
outputs=[ | |
output_video, | |
output_srt_file_video, | |
output_info_video, | |
output_textbox_video, | |
], | |
) | |
upload_audio_button.click( | |
process_uploaded_audio_file, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
uploaded_audio_file, | |
], | |
outputs=[ | |
output_srt_file_audio, | |
output_info_audio, | |
output_textbox_audio, | |
], | |
) | |
gr.Markdown(description) | |
if __name__ == "__main__": | |
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
demo.launch() | |