HAL1993's picture
Update app.py
7f5db25 verified
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import spaces
import argparse
import os
import shutil
import cv2
import gradio as gr
import numpy as np
import torch
import requests
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
import huggingface_hub
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms.functional import normalize
from dreamo.dreamo_pipeline import DreamOPipeline
from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img, resize_numpy_image_long
from tools import BEN2
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=8080)
parser.add_argument('--version', type=str, default='v1.1')
parser.add_argument('--no_turbo', action='store_true')
args = parser.parse_args()
huggingface_hub.login(os.getenv('HF_TOKEN'))
try:
shutil.rmtree('gradio_cached_examples')
except FileNotFoundError:
print("cache folder not exist")
class Generator:
def __init__(self):
device = torch.device('cuda')
# preprocessing models
# background remove model: BEN2
self.bg_rm_model = BEN2.BEN_Base().to(device).eval()
hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
# face crop and align tool: facexlib
self.face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=device,
)
# load dreamo
model_root = 'black-forest-labs/FLUX.1-dev'
dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
dreamo_pipeline.load_dreamo_model(device, use_turbo=not args.no_turbo)
self.dreamo_pipeline = dreamo_pipeline.to(device)
@torch.no_grad()
def get_align_face(self, img):
# the face preprocessing code is same as PuLID
self.face_helper.clean_all()
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
self.face_helper.read_image(image_bgr)
self.face_helper.get_face_landmarks_5(only_center_face=True)
self.face_helper.align_warp_face()
if len(self.face_helper.cropped_faces) == 0:
return None
align_face = self.face_helper.cropped_faces[0]
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
input = input.to(torch.device("cuda"))
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(input)
# only keep the face features
face_features_image = torch.where(bg, white_image, input)
face_features_image = tensor2img(face_features_image, rgb2bgr=False)
return face_features_image
generator = Generator()
@spaces.GPU
def translate_albanian_to_english(text):
"""Translate Albanian to English using sepioo-facebook-translation API."""
if not text.strip():
return ""
for attempt in range(2):
try:
response = requests.post(
"https://hal1993-mdftranslation1234567890abcdef1234567890-fc073a6.hf.space/v1/translate",
json={"from_language": "sq", "to_language": "en", "input_text": text},
headers={"accept": "application/json", "Content-Type": "application/json"},
timeout=5
)
response.raise_for_status()
translated = response.json().get("translate", "")
print(f"Translation response: {translated}")
return translated
except Exception as e:
print(f"Translation error (attempt {attempt + 1}): {e}")
if attempt == 1:
return f"Përkthimi dështoi: {str(e)}"
return f"Përkthimi dështoi"
@spaces.GPU
@torch.inference_mode()
def generate_image(
ref_image1,
ref_image2,
ref_task1,
ref_task2,
prompt_albanian,
seed,
width=1024,
height=1024,
ref_res=512,
num_steps=12,
guidance=3.5,
true_cfg=1,
cfg_start_step=0,
cfg_end_step=0,
neg_prompt='',
neg_guidance=3.5,
first_step_guidance=0,
):
if not prompt_albanian.strip():
return None
# Translate Albanian prompt to English
prompt = translate_albanian_to_english(prompt_albanian)
if prompt.startswith("Përkthimi dështoi"):
return None
print(prompt)
ref_conds = []
debug_images = []
ref_images = [ref_image1, ref_image2]
ref_tasks = [ref_task1, ref_task2]
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)):
if ref_image is not None:
if ref_task == "id":
ref_image = resize_numpy_image_long(ref_image, 1024)
ref_image = generator.get_align_face(ref_image)
elif ref_task != "style":
ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image))
if ref_task != "id":
ref_image = resize_numpy_image_area(np.array(ref_image), ref_res * ref_res)
debug_images.append(ref_image)
ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0
ref_image = 2 * ref_image - 1.0
ref_conds.append(
{
'img': ref_image,
'task': ref_task,
'idx': idx + 1,
}
)
seed = int(seed)
if seed == -1:
seed = torch.Generator(device="cpu").seed()
image = generator.dreamo_pipeline(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_steps,
guidance_scale=guidance,
ref_conds=ref_conds,
generator=torch.Generator(device="cpu").manual_seed(seed),
true_cfg_scale=true_cfg,
true_cfg_start_step=cfg_start_step,
true_cfg_end_step=cfg_end_step,
negative_prompt=neg_prompt,
neg_guidance_scale=neg_guidance,
first_step_guidance_scale=first_step_guidance if first_step_guidance > 0 else guidance,
).images[0]
return image
_HEADER_ = '''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">DreamO v1.1</h1>
<p style="font-size: 1rem; margin-bottom: 1.5rem;">Paper: <a href='https://arxiv.org/abs/2504.16915' target='_blank'>DreamO: A Unified Framework for Image Customization</a> | Codes: <a href='https://github.com/bytedance/DreamO' target='_blank'>GitHub</a></p>
</div>
🚩 Update Notes:
- 2025.06.24: Updated to version 1.1 with significant improvements in image quality, reduced likelihood of body composition errors, and enhanced aesthetics. <a href='https://github.com/bytedance/DreamO/blob/main/dreamo_v1.1.md' target='_blank'>Learn more about this model</a>
- 2025.05.11: We have updated the model to mitigate over-saturation and plastic-face issues. The new version shows consistent improvements over the previous release.
❗️❗️❗️**User Guide:**
- The most important thing to do first is to try the examples provided below the demo, which will help you better understand the capabilities of the DreamO model and the types of tasks it currently supports
- For each input, please select the appropriate task type. For general objects, characters, or clothing, choose IP — we will remove the background from the input image. If you select ID, we will extract the face region from the input image (similar to PuLID). If you select Style, the background will be preserved, and you must prepend the prompt with the instruction: 'generate a same style image.' to activate the style task.
- To accelerate inference, we adopt FLUX-turbo LoRA, which reduces the sampling steps from 25 to 12 compared to FLUX-dev. Additionally, we distill a CFG LoRA, achieving nearly a twofold reduction in steps by eliminating the need for true CFG
''' # noqa E501
_CITE_ = r"""
If DreamO is helpful, please help to ⭐ the <a href='https://github.com/bytedance/DreamO' target='_blank'> Github Repo</a>. Thanks!
---
📧 **Contact**
If you have any questions or feedbacks, feel free to open a discussion or contact <b>[email protected]</b> and <b>[email protected]</b>
""" # noqa E501
def create_demo():
with gr.Blocks() as app:
gr.HTML("""
<style>
body::before {
content: "";
display: block;
height: 320px;
background-color: var(--body-background-fill);
}
button[aria-label="Fullscreen"], button[aria-label="Fullscreen"]:hover {
display: none !important;
visibility: hidden !important;
opacity: 0 !important;
pointer-events: none !important;
}
button[aria-label="Share"], button[aria-label="Share"]:hover {
display: none !important;
}
button[aria-label="Download"] {
transform: scale(3);
transform-origin: top right;
margin: 0 !important;
padding: 6px !important;
}
</style>
""")
gr.Markdown("")
gr.Markdown("")
with gr.Row():
with gr.Column():
with gr.Row():
ref_image1 = gr.Image(label="Imazhi Referencës 1", type="numpy", height=256)
ref_image2 = gr.Image(label="Imazhi Referencës 2", type="numpy", height=256)
with gr.Row():
prompt_albanian = gr.Textbox(label="Përshkrimi", value="")
aspect_ratio = gr.Dropdown(
choices=["16:9", "1:1", "9:16"],
value="1:1",
label="Permasat e fotos"
)
with gr.Row():
ref_task1 = gr.Dropdown(choices=["ip", "id", "style"], value="id", visible=False)
ref_task2 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", visible=False)
num_steps = gr.Slider(8, 30, 12, step=1, visible=False)
guidance = gr.Slider(1.0, 10.0, 2.0, step=0.1, visible=False)
seed = gr.Textbox(value="-1", visible=False)
ref_res = gr.Slider(512, 1024, 1024, step=16, visible=False)
neg_prompt = gr.Textbox(value="", visible=False)
neg_guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, visible=False)
true_cfg = gr.Slider(1, 5, 1, step=0.1, visible=False)
cfg_start_step = gr.Slider(0, 30, 0, step=1, visible=False)
cfg_end_step = gr.Slider(0, 30, 0, step=1, visible=False)
first_step_guidance = gr.Slider(0, 10, 0, step=0.1, visible=False)
width = gr.Slider(768, 1024, 1024, step=16, visible=False)
height = gr.Slider(768, 1024, 1024, step=16, visible=False)
generate_btn = gr.Button("Gjenero")
with gr.Column():
output_image = gr.Image(label="Imazhi i Gjeneruar", format='png')
def update_resolution(aspect_ratio):
if aspect_ratio == "16:9":
return 1024, 576
elif aspect_ratio == "9:16":
return 576, 1024
else: # 1:1
return 1024, 1024
aspect_ratio.change(
fn=update_resolution,
inputs=[aspect_ratio],
outputs=[width, height]
)
generate_btn.click(
fn=generate_image,
inputs=[
ref_image1,
ref_image2,
ref_task1,
ref_task2,
prompt_albanian,
seed,
width,
height,
ref_res,
num_steps,
guidance,
true_cfg,
cfg_start_step,
cfg_end_step,
neg_prompt,
neg_guidance,
first_step_guidance,
],
outputs=[output_image]
)
return app
if __name__ == "__main__":
app = create_demo()
app.launch(share=True)