File size: 29,906 Bytes
b7f83b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
# Copyright (c) HKUST SAIL-Lab and Horizon Robotics.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

import gc
import glob
import os
import shutil
import sys
import time
from datetime import datetime

import cv2
import gradio as gr
import numpy as np
import torch
from tqdm import tqdm

from eval.utils.device import to_cpu
from eval.utils.eval_utils import uniform_sample
from sailrecon.models.sail_recon import SailRecon
from sailrecon.utils.geometry import unproject_depth_map_to_point_map
from sailrecon.utils.load_fn import load_and_preprocess_images
from sailrecon.utils.pose_enc import (
    extri_intri_to_pose_encoding,
    pose_encoding_to_extri_intri,
)
from visual_util import predictions_to_glb

device = "cuda" if torch.cuda.is_available() else "cpu"

print("Initializing and loading SailRecon model...")

model = SailRecon(kv_cache=True)
# _URL = "https://huggingface.co/HKUST-SAIL/SAIL-Recon/resolve/main/sailrecon.pt"
# model.load_state_dict(torch.hub.load_state_dict_from_url(_URL))
model_dir = "ckpt/sailrecon.pt"
model.load_state_dict(torch.load(model_dir))


model.eval()
model = model.to(device)


# -------------------------------------------------------------------------
# 1) Core model inference
# -------------------------------------------------------------------------
def run_model(target_dir, model, anchor_size=100) -> dict:
    """
    Run the SAIL-Recon model on images in the 'target_dir/images' folder and return predictions.
    """
    print(f"Processing images from {target_dir}")

    # Device check
    device = "cuda" if torch.cuda.is_available() else "cpu"
    if not torch.cuda.is_available():
        raise ValueError("CUDA is not available. Check your environment.")

    # Move model to device
    model = model.to(device)
    model.eval()

    # Load and preprocess images
    image_names = glob.glob(os.path.join(target_dir, "images", "*"))
    image_names = sorted(image_names)
    print(f"Found {len(image_names)} images")
    if len(image_names) == 0:
        raise ValueError("No images found. Check your upload.")

    images = load_and_preprocess_images(image_names).to(device)
    print(f"Preprocessed images shape: {images.shape}")
    # anchor image selection
    select_indices = uniform_sample(len(image_names), min(100, len(image_names)))
    anchor_images = images[select_indices]

    # Run inference
    print("Running inference...")
    dtype = (
        torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
    )

    with torch.no_grad():
        with torch.cuda.amp.autocast(dtype=dtype):
            print("Processing anchor images ...")
            model.tmp_forward(anchor_images)
            # del model.aggregator.global_blocks
            # relocalization on all images
            predictions_s = []
            with tqdm(total=len(image_names), desc="Relocalizing") as pbar:
                for img_split in images.split(10, dim=0):
                    pbar.update(10)
                    predictions_s += to_cpu(
                        model.reloc(img_split, ret_img=True, memory_save=False)
                    )

    predictions = {}
    predictions["extrinsic"] = torch.cat(
        [s["extrinsic"] for s in predictions_s], dim=0
    )  # (S, 4, 4)
    predictions["intrinsic"] = torch.cat(
        [s["intrinsic"] for s in predictions_s], dim=0
    )  # (S, 4, 4)
    predictions["depth"] = torch.cat(
        [s["depth_map"] for s in predictions_s], dim=0
    )  # (S, H, W, 1)
    predictions["depth_conf"] = torch.cat(
        [s["dpt_cnf"] for s in predictions_s], dim=0
    )  # (S, H, W, 1)
    predictions["images"] = torch.cat(
        [s["images"] for s in predictions_s], dim=0
    )  # (S, H, W, 3)
    predictions["world_points"] = torch.cat(
        [s["point_map"] for s in predictions_s], dim=0
    )  # (S, H, W, 3)
    predictions["world_points_conf"] = torch.cat(
        [s["xyz_cnf"] for s in predictions_s], dim=0
    )  # (S, H, W, 3)
    predictions["pose_enc"] = extri_intri_to_pose_encoding(
        predictions["extrinsic"].unsqueeze(0),
        predictions["intrinsic"].unsqueeze(0),
        images.shape[-2:],
    )[
        0
    ]  # a
    del predictions_s

    # Convert tensors to numpy
    for key in predictions.keys():
        if isinstance(predictions[key], torch.Tensor):
            predictions[key] = predictions[key].cpu().numpy()  # remove batch dimension
    predictions["pose_enc_list"] = None  # remove pose_enc_list

    # Generate world points from depth map
    print("Computing world points from depth map...")
    depth_map = predictions["depth"]  # (S, H, W, 1)
    world_points = unproject_depth_map_to_point_map(
        depth_map, predictions["extrinsic"], predictions["intrinsic"]
    )
    predictions["world_points_from_depth"] = world_points

    # Clean up
    torch.cuda.empty_cache()
    return predictions


# -------------------------------------------------------------------------
# 2) Handle uploaded video/images --> produce target_dir + images
# -------------------------------------------------------------------------
def handle_uploads(input_video, input_images):
    """
    Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
    images or extracted frames from video into it. Return (target_dir, image_paths).
    """
    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()

    # Create a unique folder name
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    target_dir = f"input_images_{timestamp}"
    target_dir_images = os.path.join(target_dir, "images")

    # Clean up if somehow that folder already exists
    if os.path.exists(target_dir):
        shutil.rmtree(target_dir)
    os.makedirs(target_dir)
    os.makedirs(target_dir_images)

    image_paths = []

    # --- Handle images ---
    if input_images is not None:
        for file_data in input_images:
            if isinstance(file_data, dict) and "name" in file_data:
                file_path = file_data["name"]
            else:
                file_path = file_data
            dst_path = os.path.join(target_dir_images, os.path.basename(file_path))
            shutil.copy(file_path, dst_path)
            image_paths.append(dst_path)

    # --- Handle video ---
    if input_video is not None:
        if isinstance(input_video, dict) and "name" in input_video:
            video_path = input_video["name"]
        else:
            video_path = input_video

        vs = cv2.VideoCapture(video_path)
        fps = vs.get(cv2.CAP_PROP_FPS)

        count = 0
        video_frame_num = 0
        while True:
            gotit, frame = vs.read()
            if not gotit:
                break
            count += 1
            image_path = os.path.join(target_dir_images, f"{video_frame_num:06}.png")
            cv2.imwrite(image_path, frame)
            image_paths.append(image_path)
            video_frame_num += 1

    # Sort final images for gallery
    image_paths = sorted(image_paths)

    end_time = time.time()
    print(
        f"Files copied to {target_dir_images}; took {end_time - start_time:.3f} seconds"
    )
    return target_dir, image_paths


# -------------------------------------------------------------------------
# 3) Update gallery on upload
# -------------------------------------------------------------------------
def update_gallery_on_upload(input_video, input_images):
    """
    Whenever user uploads or changes files, immediately handle them
    and show in the gallery. Return (target_dir, image_paths).
    If nothing is uploaded, returns "None" and empty list.
    """
    if not input_video and not input_images:
        return None, None, None, None
    target_dir, image_paths = handle_uploads(input_video, input_images)
    return (
        None,
        target_dir,
        image_paths,
        "Upload complete. Click 'Reconstruct' to begin 3D processing.",
    )


# -------------------------------------------------------------------------
# 4) Reconstruction: uses the target_dir plus any viz parameters
# -------------------------------------------------------------------------
def gradio_demo(
    target_dir,
    conf_thres=3.0,
    frame_filter="All",
    mask_black_bg=False,
    mask_white_bg=False,
    show_cam=True,
    mask_sky=False,
    downsample_ratio=100.0,
    prediction_mode="Pointmap Regression",
):
    """
    Perform reconstruction using the already-created target_dir/images.
    """
    if not os.path.isdir(target_dir) or target_dir == "None":
        return None, "No valid target directory found. Please upload first.", None, None

    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()

    # Prepare frame_filter dropdown
    target_dir_images = os.path.join(target_dir, "images")
    all_files = (
        sorted(os.listdir(target_dir_images))
        if os.path.isdir(target_dir_images)
        else []
    )
    all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
    frame_filter_choices = ["All"] + all_files

    print("Running run_model...")
    with torch.no_grad():
        predictions = run_model(target_dir, model)

    # Save predictions
    prediction_save_path = os.path.join(target_dir, "predictions.npz")
    np.savez(prediction_save_path, **predictions)

    # Handle None frame_filter
    if frame_filter is None:
        frame_filter = "All"

    # Build a GLB file name
    glbfile = os.path.join(
        target_dir,
        f"glbscene_{conf_thres}_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_maskb{mask_black_bg}_maskw{mask_white_bg}_cam{show_cam}_sky{mask_sky}_pred{prediction_mode.replace(' ', '_')}.glb",
    )

    # Convert predictions to GLB
    glbscene = predictions_to_glb(
        predictions,
        conf_thres=conf_thres,
        filter_by_frames=frame_filter,
        mask_black_bg=mask_black_bg,
        mask_white_bg=mask_white_bg,
        show_cam=show_cam,
        mask_sky=mask_sky,
        target_dir=target_dir,
        downsample_ratio=downsample_ratio / 100.0,
        prediction_mode=prediction_mode,
    )
    glbscene.export(file_obj=glbfile)

    # Cleanup
    del predictions
    gc.collect()
    torch.cuda.empty_cache()

    end_time = time.time()
    print(f"Total time: {end_time - start_time:.2f} seconds (including IO)")
    log_msg = (
        f"Reconstruction Success ({len(all_files)} frames). Waiting for visualization."
    )

    return (
        glbfile,
        log_msg,
        gr.Dropdown(choices=frame_filter_choices, value=frame_filter, interactive=True),
    )


# -------------------------------------------------------------------------
# 5) Helper functions for UI resets + re-visualization
# -------------------------------------------------------------------------
def clear_fields():
    """
    Clears the 3D viewer, the stored target_dir, and empties the gallery.
    """
    return None


def update_log():
    """
    Display a quick log message while waiting.
    """
    return "Loading and Reconstructing..."


def update_visualization(
    target_dir,
    conf_thres,
    frame_filter,
    mask_black_bg,
    mask_white_bg,
    show_cam,
    mask_sky,
    downsample_ratio,
    prediction_mode,
    is_example,
):
    """
    Reload saved predictions from npz, create (or reuse) the GLB for new parameters,
    and return it for the 3D viewer. If is_example == "True", skip.
    """

    # If it's an example click, skip as requested
    if is_example == "True":
        return (
            None,
            "No reconstruction available. Please click the Reconstruct button first.",
        )

    if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
        return (
            None,
            "No reconstruction available. Please click the Reconstruct button first.",
        )

    predictions_path = os.path.join(target_dir, "predictions.npz")
    if not os.path.exists(predictions_path):
        return (
            None,
            f"No reconstruction available at {predictions_path}. Please run 'Reconstruct' first.",
        )

    key_list = [
        "pose_enc",
        "depth",
        "depth_conf",
        "world_points",
        "world_points_conf",
        "images",
        "extrinsic",
        "intrinsic",
        "world_points_from_depth",
    ]

    loaded = np.load(predictions_path)
    predictions = {key: np.array(loaded[key]) for key in key_list if key in loaded}
    print(downsample_ratio)
    glbfile = os.path.join(
        target_dir,
        f"glbscene_{conf_thres}_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_maskb{mask_black_bg}_maskw{mask_white_bg}_cam{show_cam}_sky{mask_sky}_dr{downsample_ratio}_pred{prediction_mode.replace(' ', '_')}.glb",
    )

    if not os.path.exists(glbfile):
        glbscene = predictions_to_glb(
            predictions,
            conf_thres=conf_thres,
            filter_by_frames=frame_filter,
            mask_black_bg=mask_black_bg,
            mask_white_bg=mask_white_bg,
            show_cam=show_cam,
            mask_sky=mask_sky,
            target_dir=target_dir,
            downsample_ratio=downsample_ratio * 1.0 / 100.0,
            prediction_mode=prediction_mode,
        )
        glbscene.export(file_obj=glbfile)

    return glbfile, "Updating Visualization"


# -------------------------------------------------------------------------
# Example images
# -------------------------------------------------------------------------

great_wall_video = "examples/videos/great_wall.mp4"
colosseum_video = "examples/videos/Colosseum.mp4"
room_video = "examples/videos/room.mp4"
kitchen_video = "examples/videos/kitchen.mp4"
fern_video = "examples/videos/fern.mp4"
single_cartoon_video = "examples/videos/single_cartoon.mp4"
single_oil_painting_video = "examples/videos/single_oil_painting.mp4"
pyramid_video = "examples/videos/pyramid.mp4"


# -------------------------------------------------------------------------
# 6) Build Gradio UI
# -------------------------------------------------------------------------
theme = gr.themes.Ocean()
theme.set(
    checkbox_label_background_fill_selected="*button_primary_background_fill",
    checkbox_label_text_color_selected="*button_primary_text_color",
)

with gr.Blocks(
    theme=theme,
    css="""
    .custom-log * {
        font-style: italic;
        font-size: 22px !important;
        background-image: linear-gradient(120deg, #0ea5e9 0%, #6ee7b7 60%, #34d399 100%);
        -webkit-background-clip: text;
        background-clip: text;
        font-weight: bold !important;
        color: transparent !important;
        text-align: center !important;
    }

    .example-log * {
        font-style: italic;
        font-size: 16px !important;
        background-image: linear-gradient(120deg, #0ea5e9 0%, #6ee7b7 60%, #34d399 100%);
        -webkit-background-clip: text;
        background-clip: text;
        color: transparent !important;
    }

    #my_radio .wrap {
        display: flex;
        flex-wrap: nowrap;
        justify-content: center;
        align-items: center;
    }

    #my_radio .wrap label {
        display: flex;
        width: 50%;
        justify-content: center;
        align-items: center;
        margin: 0;
        padding: 10px 0;
        box-sizing: border-box;
    }
    """,
) as demo:
    # Instead of gr.State, we use a hidden Textbox:
    is_example = gr.Textbox(label="is_example", visible=False, value="None")
    num_images = gr.Textbox(label="num_images", visible=False, value="None")

    gr.HTML(
        """
    <h1>πŸ›οΈ SAIL-Recon: Large SfM by Augmenting Scene Regression with Localization</h1>
    <p>
    <a href="https://github.com/HKUST-SAIL/sail-recon">πŸ™ GitHub Repository</a> |
    <a href="https://hkust-sail.github.io/sail-recon/">Project Page</a>
    </p>

    <div style="font-size: 16px; line-height: 1.5;">
    <p>Upload a video or a set of images to create a 3D reconstruction of a scene or object. SAIL-Recon takes these images and generates a 3D point cloud, along with estimated camera poses.</p>

    <h3>Getting Started:</h3>
    <ol>
        <li><strong>Upload Your Data:</strong> Use the "Upload Video" or "Upload Images" buttons on the left to provide your input. Videos will be automatically split into individual frames (one frame per second).</li>
        <li><strong>Preview:</strong> Your uploaded images will appear in the gallery on the left.</li>
        <li><strong>Reconstruct:</strong> Click the "Reconstruct" button to start the 3D reconstruction process.</li>
        <li><strong>Visualize:</strong> The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file. Note that the visualization of 3D points may be slow for a large number of input images.</li>
        <li>
        <strong>Adjust Visualization (Optional):</strong>
        After reconstruction, you can fine-tune the visualization using the options below
        <details style="display:inline;">
            <summary style="display:inline;">(<strong>click to expand</strong>):</summary>
            <ul>
            <li><em>Confidence Threshold:</em> Adjust the filtering of points based on confidence.</li>
            <li><em>Show Points from Frame:</em> Select specific frames to display in the point cloud.</li>
            <li><em>Show Camera:</em> Toggle the display of estimated camera positions.</li>
            <li><em>Filter Sky / Filter Black Background:</em> Remove sky or black-background points.</li>
            <li><em>Select a Prediction Mode:</em> Choose between "Depthmap and Camera Branch" or "Pointmap Branch."</li>
            </ul>
        </details>
        </li>
    </ol>
    <p><strong style="color: #0ea5e9;">Please note:</strong> <span style="color: #0ea5e9; font-weight: bold;">SAIL-Recon typically reconstructs a scene at 5FPS with full 3D attributes. However, visualizing 3D points may take tens of seconds due to third-party rendering, which is independent of SAIL-Recon's processing time. Using the 'demo.py' can provide much faster processing.</span></p>
    </div>
    """
    )

    target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")

    with gr.Row():
        with gr.Column(scale=2):
            input_video = gr.Video(label="Upload Video", interactive=True)
            input_images = gr.File(
                file_count="multiple", label="Upload Images", interactive=True
            )

            image_gallery = gr.Gallery(
                label="Preview",
                columns=4,
                height="300px",
                show_download_button=True,
                object_fit="contain",
                preview=True,
            )

        with gr.Column(scale=4):
            with gr.Column():
                gr.Markdown("**3D Reconstruction (Point Cloud and Camera Poses)**")
                log_output = gr.Markdown(
                    "Please upload a video or images, then click Reconstruct.",
                    elem_classes=["custom-log"],
                )
                reconstruction_output = gr.Model3D(
                    height=520, zoom_speed=0.5, pan_speed=0.5
                )

            with gr.Row():
                submit_btn = gr.Button("Reconstruct", scale=1, variant="primary")
                clear_btn = gr.ClearButton(
                    [
                        input_video,
                        input_images,
                        reconstruction_output,
                        log_output,
                        target_dir_output,
                        image_gallery,
                    ],
                    scale=1,
                )

            with gr.Row():
                prediction_mode = gr.Radio(
                    ["Depthmap and Camera Branch", "Pointmap Branch"],
                    label="Select a Prediction Mode",
                    value="Depthmap and Camera Branch",
                    scale=1,
                    elem_id="my_radio",
                )

            with gr.Row():
                conf_thres = gr.Slider(
                    minimum=0,
                    maximum=100,
                    value=50,
                    step=0.1,
                    label="Confidence Threshold (%)",
                )
                downsample_ratio = gr.Slider(
                    minimum=1.0,
                    maximum=100,
                    value=100,
                    step=0.1,
                    label="Downsample Ratio(%)",
                )
                frame_filter = gr.Dropdown(
                    choices=["All"], value="All", label="Show Points from Frame"
                )
                with gr.Column():
                    show_cam = gr.Checkbox(label="Show Camera", value=True)
                    mask_sky = gr.Checkbox(label="Filter Sky", value=False)
                    mask_black_bg = gr.Checkbox(
                        label="Filter Black Background", value=False
                    )
                    mask_white_bg = gr.Checkbox(
                        label="Filter White Background", value=False
                    )

    # ---------------------- Examples section ----------------------
    examples = [
        [
            colosseum_video,
            "22",
            None,
            20.0,
            False,
            False,
            True,
            False,
            "Depthmap and Camera Branch",
            "True",
        ],
        [
            pyramid_video,
            "30",
            None,
            35.0,
            False,
            False,
            True,
            False,
            "Depthmap and Camera Branch",
            "True",
        ],
        [
            single_cartoon_video,
            "1",
            None,
            15.0,
            False,
            False,
            True,
            False,
            "Depthmap and Camera Branch",
            "True",
        ],
        [
            single_oil_painting_video,
            "1",
            None,
            20.0,
            False,
            False,
            True,
            True,
            "Depthmap and Camera Branch",
            "True",
        ],
        [
            room_video,
            "8",
            None,
            5.0,
            False,
            False,
            True,
            False,
            "Depthmap and Camera Branch",
            "True",
        ],
        [
            kitchen_video,
            "25",
            None,
            50.0,
            False,
            False,
            True,
            False,
            "Depthmap and Camera Branch",
            "True",
        ],
        [
            fern_video,
            "20",
            None,
            45.0,
            False,
            False,
            True,
            False,
            "Depthmap and Camera Branch",
            "True",
        ],
    ]

    def example_pipeline(
        input_video,
        num_images_str,
        input_images,
        conf_thres,
        mask_black_bg,
        mask_white_bg,
        show_cam,
        mask_sky,
        downsample_ratio,
        prediction_mode,
        is_example_str,
    ):
        """
        1) Copy example images to new target_dir
        2) Reconstruct
        3) Return model3D + logs + new_dir + updated dropdown + gallery
        We do NOT return is_example. It's just an input.
        """
        target_dir, image_paths = handle_uploads(input_video, input_images)
        # Always use "All" for frame_filter in examples
        frame_filter = "All"
        glbfile, log_msg, dropdown = gradio_demo(
            target_dir,
            conf_thres,
            frame_filter,
            mask_black_bg,
            mask_white_bg,
            show_cam,
            mask_sky,
            downsample_ratio,
            prediction_mode,
        )
        return glbfile, log_msg, target_dir, dropdown, image_paths

    gr.Markdown("Click any row to load an example.", elem_classes=["example-log"])

    # gr.Examples(
    #     examples=examples,
    #     inputs=[
    #         input_video,
    #         num_images,
    #         input_images,
    #         conf_thres,
    #         mask_black_bg,
    #         mask_white_bg,
    #         show_cam,
    #         mask_sky,
    #         downsample_ratio,
    #         prediction_mode,
    #         is_example,
    #     ],
    #     outputs=[reconstruction_output, log_output, target_dir_output, frame_filter, image_gallery],
    #     fn=example_pipeline,
    #     cache_examples=False,
    #     examples_per_page=50,
    # )

    # -------------------------------------------------------------------------
    # "Reconstruct" button logic:
    #  - Clear fields
    #  - Update log
    #  - gradio_demo(...) with the existing target_dir
    #  - Then set is_example = "False"
    # -------------------------------------------------------------------------
    submit_btn.click(fn=clear_fields, inputs=[], outputs=[reconstruction_output]).then(
        fn=update_log, inputs=[], outputs=[log_output]
    ).then(
        fn=gradio_demo,
        inputs=[
            target_dir_output,
            conf_thres,
            frame_filter,
            mask_black_bg,
            mask_white_bg,
            show_cam,
            mask_sky,
            downsample_ratio,
            prediction_mode,
        ],
        outputs=[reconstruction_output, log_output, frame_filter],
    ).then(
        fn=lambda: "False", inputs=[], outputs=[is_example]  # set is_example to "False"
    )

    # -------------------------------------------------------------------------
    # Real-time Visualization Updates
    # -------------------------------------------------------------------------
    conf_thres.change(
        update_visualization,
        [
            target_dir_output,
            conf_thres,
            frame_filter,
            mask_black_bg,
            mask_white_bg,
            show_cam,
            mask_sky,
            downsample_ratio,
            prediction_mode,
            is_example,
        ],
        [reconstruction_output, log_output],
    )
    downsample_ratio.change(
        update_visualization,
        [
            target_dir_output,
            conf_thres,
            frame_filter,
            mask_black_bg,
            mask_white_bg,
            show_cam,
            mask_sky,
            downsample_ratio,
            prediction_mode,
            is_example,
        ],
        [reconstruction_output, log_output],
    )
    frame_filter.change(
        update_visualization,
        [
            target_dir_output,
            conf_thres,
            frame_filter,
            mask_black_bg,
            mask_white_bg,
            show_cam,
            mask_sky,
            downsample_ratio,
            prediction_mode,
            is_example,
        ],
        [reconstruction_output, log_output],
    )
    mask_black_bg.change(
        update_visualization,
        [
            target_dir_output,
            conf_thres,
            frame_filter,
            mask_black_bg,
            mask_white_bg,
            show_cam,
            mask_sky,
            downsample_ratio,
            prediction_mode,
            is_example,
        ],
        [reconstruction_output, log_output],
    )
    mask_white_bg.change(
        update_visualization,
        [
            target_dir_output,
            conf_thres,
            frame_filter,
            mask_black_bg,
            mask_white_bg,
            show_cam,
            mask_sky,
            downsample_ratio,
            prediction_mode,
            is_example,
        ],
        [reconstruction_output, log_output],
    )
    show_cam.change(
        update_visualization,
        [
            target_dir_output,
            conf_thres,
            frame_filter,
            mask_black_bg,
            mask_white_bg,
            show_cam,
            mask_sky,
            downsample_ratio,
            prediction_mode,
            is_example,
        ],
        [reconstruction_output, log_output],
    )
    mask_sky.change(
        update_visualization,
        [
            target_dir_output,
            conf_thres,
            frame_filter,
            mask_black_bg,
            mask_white_bg,
            show_cam,
            mask_sky,
            downsample_ratio,
            prediction_mode,
            is_example,
        ],
        [reconstruction_output, log_output],
    )
    prediction_mode.change(
        update_visualization,
        [
            target_dir_output,
            conf_thres,
            frame_filter,
            mask_black_bg,
            mask_white_bg,
            show_cam,
            mask_sky,
            downsample_ratio,
            prediction_mode,
            is_example,
        ],
        [reconstruction_output, log_output],
    )

    # -------------------------------------------------------------------------
    # Auto-update gallery whenever user uploads or changes their files
    # -------------------------------------------------------------------------
    input_video.change(
        fn=update_gallery_on_upload,
        inputs=[input_video, input_images],
        outputs=[reconstruction_output, target_dir_output, image_gallery, log_output],
    )
    input_images.change(
        fn=update_gallery_on_upload,
        inputs=[input_video, input_images],
        outputs=[reconstruction_output, target_dir_output, image_gallery, log_output],
    )

    demo.queue(max_size=20).launch(show_error=True, share=True)