ggcristian's picture
Preserve scroll when re-generating plots
c94926c
raw
history blame
8.79 kB
import json
import pandas as pd
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from css_html_js import custom_css, trigger_plot
from parse import read_json, read_data
from utils import model_hyperlink, filter_RTLRepo, filter_bench, handle_special_cases
from typing import Union
from about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
def filter_leaderboard(benchmark, model_type, search_query, max_params):
subset = df[df['Benchmark'] == benchmark]
if model_type != 'All':
subset = subset[subset['Model Type'] == model_type]
if search_query:
subset = subset[subset['Model'].str.contains(search_query, case=False, na=False)]
max_params = float(max_params)
subset = subset[subset['Params'] <= max_params]
if benchmark == 'RTL-Repo':
return filter_RTLRepo(subset)
else:
return filter_bench(subset)
def generate_scatter_plot(benchmark, metric):
benchmark, metric = handle_special_cases(benchmark, metric)
subset = df[df['Benchmark'] == benchmark]
if benchmark == "RTL-Repo":
subset = subset[subset['Metric'].str.contains('EM', case=False, na=False)]
detailed_scores = subset.groupby('Model', as_index=False)['Score'].mean()
detailed_scores.rename(columns={'Score': 'EM'}, inplace=True)
detailed_scores['Average ⬆️'] = detailed_scores['EM']
else:
detailed_scores = subset.pivot_table(index='Model', columns='Metric', values='Score').reset_index()
detailed_scores['Average ⬆️'] = detailed_scores[['Syntax (STX)', 'Functionality (FNC)', 'Synthesis (SYN)', 'Power', 'Performance', 'Area']].mean(axis=1)
details = df[['Model', 'Params', 'Model Type']].drop_duplicates('Model')
scatter_data = pd.merge(detailed_scores, details, on='Model', how='left').dropna(subset=['Params', metric])
scatter_data['x'] = scatter_data['Params']
scatter_data['y'] = scatter_data[metric]
scatter_data['size'] = (scatter_data['x'] ** 0.3) * 40
type_colors = {"General": "green", "Coding": "yellow", "RTL-Specific": "blue"}
scatter_data['color'] = scatter_data['Model Type'].map(type_colors).fillna('gray')
y_axis_limits = {
'Functionality (FNC)': [5, 90], 'Syntax (STX)': [20, 100], 'Synthesis (SYN)': [5, 90],
'Power': [0, 50], 'Performance': [0, 50], 'Area': [0, 50], 'Exact Matching (EM)': [0, 50],
'Average ⬆️': [0, 80]
}
y_range = y_axis_limits.get(metric, [0, 80])
fig = px.scatter(
scatter_data, x='x', y='y', log_x=True, size='size', color='color', text='Model',
hover_data={metric: ':.2f'}, title=f'Params vs. {metric} for {benchmark}',
labels={'x': '# Params (Log Scale)', 'y': metric}, template="plotly_white",
height=600, width=1200
)
fig.update_traces(
textposition='top center', textfont_size=10,
marker=dict(opacity=0.8, line=dict(width=0.5, color='black'))
)
fig.update_layout(
xaxis=dict(
showgrid=True, type='log', tickmode='array',
tickvals=[8, 14, 32, 72, 200, 700],
ticktext=['8', '14', '32', '72', '200', '700']
),
showlegend=False, yaxis=dict(range=y_range),
margin=dict(l=50, r=50, t=50, b=50), plot_bgcolor='white'
)
return fig
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
with gr.Blocks(css=custom_css, js=js_func) as app:
df, benchmarks, metrics, default_metric = read_data()
gr.Markdown("""# TuRTLe 🐒 Model Leaderboard""")
gr.HTML("""
<p align="center">
<img src='/gradio_api/file=logo.png' alt='TuRTLe Logo' width='220'/> <br/>
</p>
""")
gr.Markdown("""
Welcome to the TuRTLe Model Leaderboard! Use the filters below to explore different RTL benchmarks and models.
[GitHub Repository](https://github.com/https://github.com/HPAI-BSC) | [arXiv Preprint](https://arxiv.org/) | [How to submit](https://github.com/https://github.com/HPAI-BSC)<br/>
Contact us: [email protected]
""")
with gr.Tabs():
with gr.Tab("Leaderboard"):
with gr.Row():
benchmark_radio = gr.Radio(choices=benchmarks, label="Select Benchmark", value='VerilogEval S2R', scale=7)
model_type_radio = gr.Radio(choices=['All', 'General', 'Coding', 'RTL-Specific'], label="Select Model Type", value='All', scale=4)
with gr.Row():
search_box = gr.Textbox(label="Search Model", placeholder="Type model name...")
params_slider = gr.Slider(
minimum=df['Params'].min(),
maximum=700,
value=700,
label="Max Params",
step=1
)
leaderboard = gr.DataFrame(
value=filter_leaderboard('VerilogEval S2R', 'All', "", 700),
headers="first row",
wrap=True,
datatype=["markdown", "markdown", "html",],
interactive=False,
column_widths=["4%", "5%", "28%", "10%", "14%"],)
with gr.Tab("Interactive Bubble Plot"):
with gr.Row():
bubble_benchmark = gr.Radio(choices=benchmarks, label="Select Benchmark", value='VerilogEval S2R')
bubble_metric = gr.Radio(choices=metrics, label="Select Metric", value=default_metric)
gr.Markdown("We show in 🟒 General Models, in 🟑 Coding Models and in πŸ”΅ RTL-Specific Models. Detailed information is shown when hovering over each model in the plot.")
scatter_plot = gr.Plot(value=generate_scatter_plot('VerilogEval S2R', default_metric), label="Bubble Chart", elem_id="full-width-plot")
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# event handlers, ugly way but it works
benchmark_radio.change(fn=filter_leaderboard, inputs=[benchmark_radio, model_type_radio, search_box, params_slider], outputs=leaderboard)
model_type_radio.change(fn=filter_leaderboard, inputs=[benchmark_radio, model_type_radio, search_box, params_slider], outputs=leaderboard)
search_box.change(fn=filter_leaderboard, inputs=[benchmark_radio, model_type_radio, search_box, params_slider], outputs=leaderboard)
params_slider.change(fn=filter_leaderboard, inputs=[benchmark_radio, model_type_radio, search_box, params_slider], outputs=leaderboard)
# RTL-Repo Bubble plot handlres
def on_benchmark_change(benchmark, metric):
benchmark, metric = handle_special_cases(benchmark, metric)
fig = generate_scatter_plot(benchmark, metric)
return gr.update(value=metric), fig
def on_metric_change(benchmark, metric):
benchmark, metric = handle_special_cases(benchmark, metric)
fig = generate_scatter_plot(benchmark, metric)
return gr.update(value=benchmark), fig
bubble_benchmark.change(
fn=on_benchmark_change,
inputs=[bubble_benchmark, bubble_metric],
outputs=[bubble_metric, scatter_plot],
js=""" // this is to avoid resetting user scroll each time a plot is re-generated
(benchmark, metric) => {
let scrollY = window.scrollY;
const observer = new MutationObserver(() => {
window.scrollTo(0, scrollY);
observer.disconnect();
});
observer.observe(document.getElementById('full-width-plot'), { childList: true });
return [benchmark, metric];
}
""")
bubble_metric.change(
fn=on_metric_change,
inputs=[bubble_benchmark, bubble_metric],
outputs=[bubble_benchmark, scatter_plot],
js=""" // this is to avoid resetting user scroll each time a plot is re-generated
(benchmark, metric) => {
let scrollY = window.scrollY;
const observer = new MutationObserver(() => {
window.scrollTo(0, scrollY);
observer.disconnect();
});
observer.observe(document.getElementById('full-width-plot'), { childList: true });
return [benchmark, metric];
}
""")
app.launch(allowed_paths=["logo.png"])