Spaces:
Running
Running
Commit
·
99baaf6
1
Parent(s):
6cf1214
Spacing between cols
Browse files
app.py
CHANGED
@@ -280,15 +280,13 @@ with gr.Blocks(
|
|
280 |
],
|
281 |
interactive=False,
|
282 |
column_widths=[
|
283 |
-
"
|
284 |
-
"
|
285 |
-
"
|
286 |
-
"
|
287 |
-
"
|
288 |
-
"
|
289 |
-
"
|
290 |
-
"8%",
|
291 |
-
"8%",
|
292 |
],
|
293 |
)
|
294 |
|
|
|
280 |
],
|
281 |
interactive=False,
|
282 |
column_widths=[
|
283 |
+
"5%",
|
284 |
+
"27%",
|
285 |
+
"15%",
|
286 |
+
"9%",
|
287 |
+
"12%",
|
288 |
+
"9%",
|
289 |
+
"14%",
|
|
|
|
|
290 |
],
|
291 |
)
|
292 |
|
utils.py
CHANGED
@@ -86,29 +86,32 @@ def filter_bench(subset: pd.DataFrame, df_agg=None, agg_column=None) -> pd.DataF
|
|
86 |
axis=1,
|
87 |
)
|
88 |
pivot_df["Type"] = pivot_df["Model Type"].map(lambda x: type_emoji.get(x, ""))
|
|
|
|
|
|
|
|
|
89 |
pivot_df.rename(
|
90 |
columns={
|
91 |
-
"Syntax (STX)": "
|
92 |
-
"Functionality (FNC)": "
|
93 |
-
"Synthesis (SYN)": "
|
94 |
-
"
|
95 |
},
|
96 |
inplace=True,
|
97 |
)
|
98 |
-
|
99 |
columns_order = [
|
100 |
"Type",
|
101 |
"Model",
|
102 |
"Params",
|
103 |
-
"
|
104 |
-
"
|
105 |
-
"
|
106 |
-
"
|
107 |
-
"Perf",
|
108 |
-
"Area",
|
109 |
]
|
110 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
111 |
-
pivot_df = pivot_df.sort_values(by="
|
|
|
|
|
112 |
return pivot_df
|
113 |
|
114 |
|
@@ -165,16 +168,17 @@ def filter_bench_all(
|
|
165 |
axis=1,
|
166 |
)
|
167 |
pivot_df["Type"] = pivot_df["Model Type"].map(lambda x: type_emoji.get(x, ""))
|
|
|
|
|
|
|
168 |
|
169 |
pivot_df.rename(
|
170 |
columns={
|
171 |
"Exact Matching (EM)": "EM",
|
172 |
-
"Syntax (STX)": "
|
173 |
-
"Functionality (FNC)": "
|
174 |
-
"Synthesis (SYN)": "
|
175 |
-
"
|
176 |
-
"Performance": "Agg Perf",
|
177 |
-
"Area": "Agg Area",
|
178 |
},
|
179 |
inplace=True,
|
180 |
)
|
@@ -183,15 +187,13 @@ def filter_bench_all(
|
|
183 |
"Type",
|
184 |
"Model",
|
185 |
"Params",
|
186 |
-
"
|
187 |
-
"
|
188 |
-
"
|
189 |
-
"
|
190 |
-
"Agg Perf",
|
191 |
-
"Agg Area",
|
192 |
]
|
193 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
194 |
-
pivot_df = pivot_df.sort_values(by="
|
195 |
drop=True
|
196 |
)
|
197 |
return pivot_df
|
|
|
86 |
axis=1,
|
87 |
)
|
88 |
pivot_df["Type"] = pivot_df["Model Type"].map(lambda x: type_emoji.get(x, ""))
|
89 |
+
pivot_df["Post-Synthesis (PSQ)"] = (
|
90 |
+
pivot_df[["Power", "Performance", "Area"]].mean(axis=1).round(2)
|
91 |
+
)
|
92 |
+
|
93 |
pivot_df.rename(
|
94 |
columns={
|
95 |
+
"Syntax (STX)": "Syntax",
|
96 |
+
"Functionality (FNC)": "Functionality",
|
97 |
+
"Synthesis (SYN)": "Synthesis",
|
98 |
+
"Post-Synthesis (PSQ)": "Post-Synthesis",
|
99 |
},
|
100 |
inplace=True,
|
101 |
)
|
|
|
102 |
columns_order = [
|
103 |
"Type",
|
104 |
"Model",
|
105 |
"Params",
|
106 |
+
"Syntax",
|
107 |
+
"Functionality",
|
108 |
+
"Synthesis",
|
109 |
+
"Post-Synthesis",
|
|
|
|
|
110 |
]
|
111 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
112 |
+
pivot_df = pivot_df.sort_values(by="Functionality", ascending=False).reset_index(
|
113 |
+
drop=True
|
114 |
+
)
|
115 |
return pivot_df
|
116 |
|
117 |
|
|
|
168 |
axis=1,
|
169 |
)
|
170 |
pivot_df["Type"] = pivot_df["Model Type"].map(lambda x: type_emoji.get(x, ""))
|
171 |
+
pivot_df["Post-Synthesis Quality"] = (
|
172 |
+
pivot_df[["Power", "Performance", "Area"]].mean(axis=1).round(2)
|
173 |
+
)
|
174 |
|
175 |
pivot_df.rename(
|
176 |
columns={
|
177 |
"Exact Matching (EM)": "EM",
|
178 |
+
"Syntax (STX)": "Syntax",
|
179 |
+
"Functionality (FNC)": "Functionality",
|
180 |
+
"Synthesis (SYN)": "Synthesis",
|
181 |
+
"Post-Synthesis Quality": "Post-Synthesis",
|
|
|
|
|
182 |
},
|
183 |
inplace=True,
|
184 |
)
|
|
|
187 |
"Type",
|
188 |
"Model",
|
189 |
"Params",
|
190 |
+
"Syntax",
|
191 |
+
"Functionality",
|
192 |
+
"Synthesis",
|
193 |
+
"Post-Synthesis",
|
|
|
|
|
194 |
]
|
195 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
196 |
+
pivot_df = pivot_df.sort_values(by="Functionality", ascending=False).reset_index(
|
197 |
drop=True
|
198 |
)
|
199 |
return pivot_df
|