HamidBekam commited on
Commit
1feab0b
·
1 Parent(s): 300269e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py CHANGED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # streamlit_app.py
2
+ # import streamlit as st
3
+ import pandas as pd
4
+ import torch
5
+ from sentence_transformers import SentenceTransformer, util
6
+ import pickle
7
+ import numpy as np
8
+
9
+ import os
10
+ import importlib
11
+
12
+ #Load sentences & embeddings from disc
13
+ with open('mean_clinical_inno_embeddings_masterid_paraphrase-multilingual-mpnet-base-v2.pkl', "rb") as fIn:
14
+ stored_data = pickle.load(fIn)
15
+ stored_masterid = stored_data['pro_master_id']
16
+ stored_products = stored_data['mean_products']
17
+ stored_embeddings = stored_data['mean_embeddings']
18
+
19
+ # Initialize the SentenceTransformer model
20
+ embedder = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
21
+
22
+ def get_similar_products(query, products, mean_embeddings_tensor, top_k=10):
23
+ query_embedding = embedder.encode(query, convert_to_tensor=True)
24
+ cos_scores = util.cos_sim(query_embedding, mean_embeddings_tensor)[0]
25
+ top_results = torch.topk(cos_scores, k=top_k)
26
+
27
+ similar_products = [(products[idx.item()], score.item()) for score, idx in zip(top_results[0], top_results[1])]
28
+ return similar_products
29
+
30
+
31
+ # Streamlit UI
32
+ st.title("Product Similarity Finder")
33
+
34
+ # User input
35
+ user_query = "SuperSole Bred læst er en utrolig..."
36
+
37
+ results = get_similar_products(user_query, stored_products, stored_embeddings)
38
+ for product, score in results:
39
+ st.write(f"Product: {product} (Score: {score:.4f})")