Spaces:
Sleeping
Sleeping
Commit
·
1feab0b
1
Parent(s):
300269e
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# streamlit_app.py
|
| 2 |
+
# import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import torch
|
| 5 |
+
from sentence_transformers import SentenceTransformer, util
|
| 6 |
+
import pickle
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import importlib
|
| 11 |
+
|
| 12 |
+
#Load sentences & embeddings from disc
|
| 13 |
+
with open('mean_clinical_inno_embeddings_masterid_paraphrase-multilingual-mpnet-base-v2.pkl', "rb") as fIn:
|
| 14 |
+
stored_data = pickle.load(fIn)
|
| 15 |
+
stored_masterid = stored_data['pro_master_id']
|
| 16 |
+
stored_products = stored_data['mean_products']
|
| 17 |
+
stored_embeddings = stored_data['mean_embeddings']
|
| 18 |
+
|
| 19 |
+
# Initialize the SentenceTransformer model
|
| 20 |
+
embedder = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
| 21 |
+
|
| 22 |
+
def get_similar_products(query, products, mean_embeddings_tensor, top_k=10):
|
| 23 |
+
query_embedding = embedder.encode(query, convert_to_tensor=True)
|
| 24 |
+
cos_scores = util.cos_sim(query_embedding, mean_embeddings_tensor)[0]
|
| 25 |
+
top_results = torch.topk(cos_scores, k=top_k)
|
| 26 |
+
|
| 27 |
+
similar_products = [(products[idx.item()], score.item()) for score, idx in zip(top_results[0], top_results[1])]
|
| 28 |
+
return similar_products
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# Streamlit UI
|
| 32 |
+
st.title("Product Similarity Finder")
|
| 33 |
+
|
| 34 |
+
# User input
|
| 35 |
+
user_query = "SuperSole Bred læst er en utrolig..."
|
| 36 |
+
|
| 37 |
+
results = get_similar_products(user_query, stored_products, stored_embeddings)
|
| 38 |
+
for product, score in results:
|
| 39 |
+
st.write(f"Product: {product} (Score: {score:.4f})")
|