|
import gradio as gr |
|
from transformers import AutoConfig |
|
from huggingface_hub import list_models |
|
import asyncio |
|
from typing import List |
|
import time |
|
from functools import lru_cache |
|
import json |
|
from datetime import datetime, timedelta |
|
import threading |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
|
|
|
|
|
|
|
|
search_cache = {} |
|
|
|
POPULAR_MODELS = [ |
|
"Qwen/Qwen3-30B-A3B", |
|
"meta-llama/Llama-3.1-8B-Instruct", |
|
"meta-llama/Llama-3.1-70B-Instruct", |
|
"microsoft/DialoGPT-medium", |
|
"microsoft/DialoGPT-large", |
|
"mistralai/Mistral-7B-Instruct-v0.3", |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"deepseek-ai/DeepSeek-V2-Chat", |
|
"deepseek-ai/DeepSeek-V3-Base", |
|
"google/gemma-2-9b", |
|
"google/gemma-2-27b", |
|
"Qwen/QwQ-32B-Preview", |
|
"Qwen/Qwen2.5-72B-Instruct", |
|
"anthropic/claude-3-haiku-20240307", |
|
] |
|
|
|
|
|
|
|
GPU_SPECS = { |
|
|
|
"RTX 3060": {"memory_gb": 12, "compute_capability": "8.6", "tflops_fp32": 13.0, "category": "Consumer"}, |
|
"RTX 3060 Ti": {"memory_gb": 8, "compute_capability": "8.6", "tflops_fp32": 16.2, "category": "Consumer"}, |
|
"RTX 3070": {"memory_gb": 8, "compute_capability": "8.6", "tflops_fp32": 20.3, "category": "Consumer"}, |
|
"RTX 3070 Ti": {"memory_gb": 8, "compute_capability": "8.6", "tflops_fp32": 21.7, "category": "Consumer"}, |
|
"RTX 3080": {"memory_gb": 10, "compute_capability": "8.6", "tflops_fp32": 29.8, "category": "Consumer"}, |
|
"RTX 3080 Ti": {"memory_gb": 12, "compute_capability": "8.6", "tflops_fp32": 34.1, "category": "Consumer"}, |
|
"RTX 3090": {"memory_gb": 24, "compute_capability": "8.6", "tflops_fp32": 35.6, "category": "Consumer"}, |
|
"RTX 3090 Ti": {"memory_gb": 24, "compute_capability": "8.6", "tflops_fp32": 40.0, "category": "Consumer"}, |
|
|
|
|
|
"RTX 4060": {"memory_gb": 8, "compute_capability": "8.9", "tflops_fp32": 15.1, "category": "Consumer"}, |
|
"RTX 4060 Ti": {"memory_gb": 8, "compute_capability": "8.9", "tflops_fp32": 22.1, "category": "Consumer"}, |
|
"RTX 4060 Ti 16GB": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 22.1, "category": "Consumer"}, |
|
"RTX 4070": {"memory_gb": 12, "compute_capability": "8.9", "tflops_fp32": 29.1, "category": "Consumer"}, |
|
"RTX 4070 Super": {"memory_gb": 12, "compute_capability": "8.9", "tflops_fp32": 35.5, "category": "Consumer"}, |
|
"RTX 4070 Ti": {"memory_gb": 12, "compute_capability": "8.9", "tflops_fp32": 40.1, "category": "Consumer"}, |
|
"RTX 4070 Ti Super": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 44.1, "category": "Consumer"}, |
|
"RTX 4080": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 48.7, "category": "Consumer"}, |
|
"RTX 4080 Super": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 52.2, "category": "Consumer"}, |
|
"RTX 4090": {"memory_gb": 24, "compute_capability": "8.9", "tflops_fp32": 83.0, "category": "Consumer"}, |
|
|
|
|
|
"RTX 5060": {"memory_gb": 8, "compute_capability": "10.0", "tflops_fp32": 18.5, "category": "Consumer"}, |
|
"RTX 5060 Ti": {"memory_gb": 16, "compute_capability": "10.0", "tflops_fp32": 28.2, "category": "Consumer"}, |
|
"RTX 5070": {"memory_gb": 12, "compute_capability": "10.0", "tflops_fp32": 35.1, "category": "Consumer"}, |
|
"RTX 5070 Ti": {"memory_gb": 16, "compute_capability": "10.0", "tflops_fp32": 48.3, "category": "Consumer"}, |
|
"RTX 5080": {"memory_gb": 16, "compute_capability": "10.0", "tflops_fp32": 60.5, "category": "Consumer"}, |
|
"RTX 5090": {"memory_gb": 32, "compute_capability": "10.0", "tflops_fp32": 125.0, "category": "Consumer"}, |
|
|
|
|
|
"RTX A2000": {"memory_gb": 12, "compute_capability": "8.6", "tflops_fp32": 8.0, "category": "Workstation"}, |
|
"RTX A4000": {"memory_gb": 16, "compute_capability": "8.6", "tflops_fp32": 19.2, "category": "Workstation"}, |
|
"RTX A4500": {"memory_gb": 20, "compute_capability": "8.6", "tflops_fp32": 23.7, "category": "Workstation"}, |
|
"RTX A5000": {"memory_gb": 24, "compute_capability": "8.6", "tflops_fp32": 27.8, "category": "Workstation"}, |
|
"RTX A6000": {"memory_gb": 48, "compute_capability": "8.6", "tflops_fp32": 38.7, "category": "Workstation"}, |
|
|
|
|
|
"RTX 6000 Ada": {"memory_gb": 48, "compute_capability": "8.9", "tflops_fp32": 91.1, "category": "Workstation"}, |
|
|
|
|
|
"A100 40GB": {"memory_gb": 40, "compute_capability": "8.0", "tflops_fp32": 19.5, "category": "Datacenter"}, |
|
"A100 80GB": {"memory_gb": 80, "compute_capability": "8.0", "tflops_fp32": 19.5, "category": "Datacenter"}, |
|
|
|
|
|
"H100 80GB": {"memory_gb": 80, "compute_capability": "9.0", "tflops_fp32": 67.0, "category": "Datacenter"}, |
|
"H100 94GB": {"memory_gb": 94, "compute_capability": "9.0", "tflops_fp32": 67.0, "category": "Datacenter"}, |
|
|
|
|
|
"H200 141GB": {"memory_gb": 141, "compute_capability": "9.0", "tflops_fp32": 67.0, "category": "Datacenter"}, |
|
|
|
|
|
"B200 180GB": {"memory_gb": 180, "compute_capability": "10.0", "tflops_fp32": 80.0, "category": "Datacenter"}, |
|
|
|
|
|
"L40": {"memory_gb": 48, "compute_capability": "8.9", "tflops_fp32": 91.6, "category": "Datacenter"}, |
|
"L40S": {"memory_gb": 48, "compute_capability": "8.9", "tflops_fp32": 91.6, "category": "Datacenter"}, |
|
} |
|
|
|
|
|
price_cache = {} |
|
PRICE_CACHE_DURATION = timedelta(hours=6) |
|
|
|
def fetch_single_gpu_price(gpu_name): |
|
"""Fetch price for a single GPU (used in parallel)""" |
|
try: |
|
print(f"Fetching price for {gpu_name}...") |
|
price = get_gpu_price(gpu_name) |
|
if price: |
|
print(f"Found price for {gpu_name}: ${price}") |
|
return gpu_name, price |
|
else: |
|
print(f"✗ No price found for {gpu_name}, using fallback") |
|
return gpu_name, get_fallback_price(gpu_name) |
|
except Exception as e: |
|
print(f"✗ Error fetching {gpu_name}: {e}") |
|
return gpu_name, get_fallback_price(gpu_name) |
|
|
|
def preload_gpu_prices(): |
|
"""Pre-fetch all GPU prices in parallel on startup""" |
|
print("Pre-loading GPU prices...") |
|
start_time = time.time() |
|
|
|
|
|
gpu_names = list(GPU_SPECS.keys()) |
|
|
|
|
|
with ThreadPoolExecutor(max_workers=8) as executor: |
|
|
|
future_to_gpu = {executor.submit(fetch_single_gpu_price, gpu_name): gpu_name |
|
for gpu_name in gpu_names} |
|
|
|
|
|
for future in as_completed(future_to_gpu): |
|
gpu_name, price = future.result() |
|
|
|
cache_key = gpu_name.lower().replace(" ", "_") |
|
price_cache[cache_key] = { |
|
"price": price, |
|
"timestamp": datetime.now() |
|
} |
|
|
|
end_time = time.time() |
|
total_time = end_time - start_time |
|
print(f"Loaded prices for {len(gpu_names)} GPUs in {total_time:.1f} seconds") |
|
print(f"Cache contains {len(price_cache)} price entries") |
|
|
|
def start_price_preloading(): |
|
"""Start price preloading in background thread""" |
|
def preload_worker(): |
|
preload_gpu_prices() |
|
|
|
|
|
preload_thread = threading.Thread(target=preload_worker, daemon=True) |
|
preload_thread.start() |
|
print("Price preloading started in background...") |
|
|
|
def get_gpu_price(gpu_name): |
|
"""Get GPU price from curated pricing data""" |
|
current_time = datetime.now() |
|
|
|
|
|
cache_key = gpu_name.lower().replace(" ", "_") |
|
if cache_key in price_cache: |
|
cached_data = price_cache[cache_key] |
|
if current_time - cached_data["timestamp"] < PRICE_CACHE_DURATION: |
|
return cached_data["price"] |
|
|
|
price = get_fallback_price(gpu_name) |
|
|
|
|
|
price_cache[cache_key] = { |
|
"price": price, |
|
"timestamp": current_time |
|
} |
|
|
|
return price |
|
|
|
|
|
def get_fallback_price(gpu_name): |
|
"""Curated GPU pricing data""" |
|
fallback_prices = { |
|
|
|
"RTX 3060": 280, |
|
"RTX 3060 Ti": 320, |
|
"RTX 3070": 420, |
|
"RTX 3070 Ti": 480, |
|
"RTX 3080": 580, |
|
"RTX 3080 Ti": 720, |
|
"RTX 3090": 950, |
|
"RTX 3090 Ti": 1100, |
|
|
|
|
|
"RTX 4060": 300, |
|
"RTX 4060 Ti": 380, |
|
"RTX 4060 Ti 16GB": 480, |
|
"RTX 4070": 580, |
|
"RTX 4070 Super": 680, |
|
"RTX 4070 Ti": 780, |
|
"RTX 4070 Ti Super": 880, |
|
"RTX 4080": 980, |
|
"RTX 4080 Super": 880, |
|
"RTX 4090": 1500, |
|
|
|
|
|
"RTX 5060": 400, |
|
"RTX 5060 Ti": 600, |
|
"RTX 5070": 800, |
|
"RTX 5070 Ti": 1000, |
|
"RTX 5080": 1200, |
|
"RTX 5090": 2000, |
|
|
|
|
|
"RTX A2000": 650, |
|
"RTX A4000": 1200, |
|
"RTX A4500": 2200, |
|
"RTX A5000": 2800, |
|
"RTX A6000": 4500, |
|
"RTX 6000 Ada": 6800, |
|
|
|
|
|
"A100 40GB": 12000, |
|
"A100 80GB": 15000, |
|
"H100 80GB": 30000, |
|
"H100 94GB": 35000, |
|
"H200 141GB": 40000, |
|
"B200 180GB": 50000, |
|
"L40": 9000, |
|
"L40S": 10000, |
|
} |
|
return fallback_prices.get(gpu_name, 1000) |
|
|
|
def search_models_fast(query: str, max_results: int = 30) -> List[str]: |
|
if not query or len(query.strip()) < 1: |
|
return POPULAR_MODELS[:15] |
|
|
|
query = query.strip() |
|
cache_key = f"{query.lower()}_{max_results}" |
|
|
|
current_time = time.time() |
|
if cache_key in search_cache: |
|
cached_result, cache_time = search_cache[cache_key] |
|
if current_time - cache_time < 300: |
|
return cached_result |
|
|
|
try: |
|
print(f"Searching HF Hub for: {query}") |
|
|
|
all_matches = [] |
|
seen_models = set() |
|
|
|
for model in POPULAR_MODELS: |
|
if query.lower() in model.lower() and model not in seen_models: |
|
all_matches.append(model) |
|
seen_models.add(model) |
|
|
|
models = list_models( |
|
search=query, |
|
task="text-generation", |
|
library="transformers", |
|
sort="downloads", |
|
direction=-1, |
|
limit=max_results, |
|
full=False |
|
) |
|
|
|
for model in models: |
|
if model.id not in seen_models and len(all_matches) < max_results: |
|
all_matches.append(model.id) |
|
seen_models.add(model.id) |
|
|
|
result = all_matches[:max_results] |
|
search_cache[cache_key] = (result, current_time) |
|
|
|
if len(search_cache) > 15: |
|
oldest_key = min(search_cache.keys(), key=lambda k: search_cache[k][1]) |
|
del search_cache[oldest_key] |
|
|
|
return result |
|
|
|
except Exception as e: |
|
print(f"Search error: {e}") |
|
popular_matches = [model for model in POPULAR_MODELS if query.lower() in model.lower()] |
|
return popular_matches if popular_matches else POPULAR_MODELS[:15] |
|
|
|
|
|
def calculate(name: str, ctx_len: int, num_users: int, dtype: str, hf_token: str): |
|
if not name or not name.strip(): |
|
raise gr.Error("Please search for and select a model first") |
|
|
|
name = name.strip() |
|
hf_token = hf_token.strip() |
|
try: |
|
cfg = AutoConfig.from_pretrained( |
|
name, |
|
trust_remote_code=True, |
|
token=hf_token or None, |
|
) |
|
except Exception as e: |
|
raise gr.Error(e) |
|
|
|
use_mla = cfg.architectures[0].startswith(("DeepseekV2", "DeepseekV3")) |
|
|
|
if hasattr(cfg, "text_config"): |
|
cfg = cfg.text_config |
|
|
|
num_layers = cfg.num_hidden_layers |
|
num_attention_heads = cfg.num_attention_heads |
|
num_kv_heads = getattr(cfg, "num_key_value_heads", num_attention_heads) |
|
|
|
if use_mla: |
|
attention_type = "MLA" |
|
elif num_kv_heads == num_attention_heads: |
|
attention_type = "MHA" |
|
else: |
|
attention_type = "GQA" |
|
|
|
model_config = [ |
|
["num_layers", num_layers], |
|
["max_ctx_len", cfg.max_position_embeddings], |
|
["attention_type", attention_type], |
|
["num_attention_heads", num_attention_heads], |
|
["num_kv_heads", num_kv_heads], |
|
] |
|
if ctx_len > cfg.max_position_embeddings: |
|
gr.Warning( |
|
"Requested context length is larger than the max value supported by the model" |
|
) |
|
|
|
if use_mla: |
|
kv_lora_rank = cfg.kv_lora_rank |
|
qk_rope_head_dim = cfg.qk_rope_head_dim |
|
nelems_per_token = num_layers * (kv_lora_rank + qk_rope_head_dim) |
|
|
|
model_config.append(["kv_lora_rank", kv_lora_rank]) |
|
model_config.append(["qk_rope_head_dim", qk_rope_head_dim]) |
|
model_config.append(["calc_formula", f"{num_layers} * ({kv_lora_rank} + {qk_rope_head_dim})"]) |
|
|
|
else: |
|
head_dim = getattr(cfg, "head_dim", cfg.hidden_size // num_attention_heads) |
|
nelems_per_token = num_layers * num_kv_heads * head_dim * 2 |
|
|
|
model_config.append(["head_dim", head_dim]) |
|
if attention_type == "GQA": |
|
kv_ratio = num_attention_heads // num_kv_heads |
|
model_config.append(["gqa_ratio", f"{kv_ratio}:1"]) |
|
model_config.append(["calc_formula", f"{num_layers} * {num_kv_heads} * {head_dim} * 2"]) |
|
|
|
if dtype == "fp16/bf16": |
|
nbytes_per_elem = 2 |
|
elif dtype == "fp8": |
|
nbytes_per_elem = 1 + 2 / cfg.hidden_size |
|
elif dtype == "fp4": |
|
nbytes_per_elem = 0.5 + 2 / 32 |
|
|
|
kv_cache_size = nelems_per_token * ctx_len * num_users * nbytes_per_elem / 1e9 |
|
|
|
|
|
gpu_recommendations = recommend_gpus( |
|
kv_cache_size_gb=kv_cache_size, |
|
config=cfg, |
|
dtype=dtype, |
|
ctx_len=ctx_len, |
|
num_users=num_users |
|
) |
|
|
|
return kv_cache_size, model_config, gpu_recommendations |
|
|
|
|
|
DESCRIPTION = ( |
|
"Calculate KV cache memory requirements for transformer models. " |
|
"Supports MHA, GQA, and MLA attention mechanisms with fp16/bf16, fp8, and fp4 data types." |
|
) |
|
|
|
def search_models_on_submit(search_query): |
|
if not search_query or len(search_query.strip()) < 2: |
|
return [ |
|
gr.Textbox(interactive=True), |
|
gr.Dropdown(choices=[], value="", visible=False), |
|
gr.Button(interactive=True) |
|
] |
|
|
|
query_stripped = search_query.strip() |
|
|
|
search_results = search_models_fast(query_stripped, max_results=30) |
|
|
|
if query_stripped not in search_results: |
|
search_results.insert(0, query_stripped) |
|
|
|
return [ |
|
gr.Textbox(interactive=True, value=query_stripped), |
|
gr.Dropdown( |
|
choices=search_results, |
|
value=query_stripped, |
|
visible=True, |
|
info=f"Found {len(search_results)} models - select one" |
|
), |
|
gr.Button(interactive=True) |
|
] |
|
|
|
def update_selection_from_dropdown(dropdown_value): |
|
return gr.Textbox(value=dropdown_value) |
|
|
|
def estimate_model_memory(config, dtype): |
|
"""Estimate model weight memory requirements in GB using actual config object""" |
|
try: |
|
if not config: |
|
return 5.0 |
|
|
|
|
|
num_layers = getattr(config, 'num_hidden_layers', getattr(config, 'num_layers', 32)) |
|
hidden_size = getattr(config, 'hidden_size', getattr(config, 'd_model', 4096)) |
|
vocab_size = getattr(config, 'vocab_size', 50000) |
|
intermediate_size = getattr(config, 'intermediate_size', hidden_size * 4) |
|
|
|
|
|
|
|
is_deepseek_v3 = (getattr(config, 'model_type', '') == 'deepseek_v3' or |
|
any('deepseek' in arch.lower() for arch in getattr(config, 'architectures', []))) |
|
|
|
if is_deepseek_v3 and hasattr(config, 'q_lora_rank'): |
|
|
|
|
|
L = num_layers |
|
H = hidden_size |
|
I = intermediate_size |
|
I_moe = getattr(config, 'moe_intermediate_size', 2048) |
|
n_h = getattr(config, 'num_attention_heads', 128) |
|
r_q = getattr(config, 'q_lora_rank', 1536) |
|
r_kv = getattr(config, 'kv_lora_rank', 512) |
|
V = vocab_size |
|
|
|
|
|
qk_nope_head_dim = getattr(config, 'qk_nope_head_dim', 128) |
|
qk_rope_head_dim = getattr(config, 'qk_rope_head_dim', 64) |
|
v_head_dim = getattr(config, 'v_head_dim', 128) |
|
|
|
|
|
|
|
w_q_a = H * r_q |
|
|
|
w_q_b = r_q * n_h * (qk_nope_head_dim + qk_rope_head_dim) |
|
|
|
w_kv_a = H * (r_kv + qk_rope_head_dim) |
|
|
|
w_kv_b = r_kv * n_h * (qk_nope_head_dim + v_head_dim) |
|
|
|
w_o = (n_h * v_head_dim) * H |
|
|
|
attention_per_layer = w_q_a + w_q_b + w_kv_a + w_kv_b + w_o |
|
total_attention = L * attention_per_layer |
|
|
|
|
|
dense_ffn_per_layer = 3 * H * I |
|
total_dense_ffn = 3 * dense_ffn_per_layer |
|
|
|
|
|
moe_ffn_per_expert = 3 * H * I_moe |
|
n_routed_experts = getattr(config, 'n_routed_experts', 256) |
|
n_shared_experts = getattr(config, 'n_shared_experts', 1) |
|
experts_per_moe_layer = n_routed_experts + n_shared_experts |
|
moe_ffn_per_layer = experts_per_moe_layer * moe_ffn_per_expert |
|
moe_layers = L - 3 |
|
total_moe_ffn = moe_layers * moe_ffn_per_layer |
|
|
|
|
|
embeddings_and_head = 2 * V * H |
|
|
|
|
|
total_params = total_attention + total_dense_ffn + total_moe_ffn + embeddings_and_head |
|
|
|
print(f"DEBUG: DeepSeek V3 parameter breakdown:") |
|
print(f" Attention ({L} layers): {total_attention/1e9:.2f}B") |
|
print(f" Dense FFN (3 layers): {total_dense_ffn/1e9:.2f}B") |
|
print(f" MoE FFN ({moe_layers} layers): {total_moe_ffn/1e9:.2f}B") |
|
print(f" Embeddings + Head: {embeddings_and_head/1e9:.2f}B") |
|
print(f" Total calculated: {total_params/1e9:.1f}B parameters") |
|
|
|
else: |
|
|
|
num_attention_heads = getattr(config, 'num_attention_heads', hidden_size // 64) |
|
num_kv_heads = getattr(config, 'num_key_value_heads', num_attention_heads) |
|
head_dim = getattr(config, 'head_dim', hidden_size // num_attention_heads) |
|
|
|
|
|
q_params = hidden_size * (num_attention_heads * head_dim) |
|
kv_params = hidden_size * (num_kv_heads * head_dim) * 2 |
|
o_params = (num_attention_heads * head_dim) * hidden_size |
|
attention_params_per_layer = q_params + kv_params + o_params |
|
attention_params = num_layers * attention_params_per_layer |
|
|
|
|
|
ffn_params = num_layers * (2 * hidden_size * intermediate_size + intermediate_size * hidden_size) |
|
|
|
|
|
embedding_params = vocab_size * hidden_size |
|
|
|
|
|
other_params = num_layers * 2 * hidden_size + hidden_size |
|
|
|
total_params = embedding_params + attention_params + ffn_params + other_params |
|
|
|
print(f"DEBUG: Standard transformer parameter breakdown:") |
|
print(f" Embeddings: {embedding_params/1e9:.1f}B") |
|
print(f" Attention: {attention_params/1e9:.1f}B") |
|
print(f" FFN: {ffn_params/1e9:.1f}B") |
|
print(f" Other: {other_params/1e9:.1f}B") |
|
print(f" Total calculated: {total_params/1e9:.1f}B parameters") |
|
|
|
|
|
if dtype == "fp16/bf16": |
|
bytes_per_param = 2 |
|
elif dtype == "fp8": |
|
bytes_per_param = 1 |
|
elif dtype == "fp4": |
|
bytes_per_param = 0.5 |
|
else: |
|
bytes_per_param = 4 |
|
|
|
model_memory_gb = (total_params * bytes_per_param) / (1024**3) |
|
|
|
|
|
model_memory_gb *= 1.05 |
|
|
|
return model_memory_gb |
|
|
|
except Exception as e: |
|
print(f"Error estimating model memory from config: {e}") |
|
return 70.0 |
|
|
|
|
|
def estimate_activation_memory(ctx_len, num_users, config): |
|
"""Estimate activation memory requirements in GB using actual config object""" |
|
try: |
|
if not config: |
|
return 1.0 |
|
|
|
|
|
hidden_size = getattr(config, 'hidden_size', getattr(config, 'd_model', 4096)) |
|
|
|
batch_size = num_users |
|
|
|
|
|
|
|
|
|
|
|
io_activations = batch_size * ctx_len * hidden_size |
|
|
|
|
|
|
|
intermediate_size = getattr(config, 'intermediate_size', hidden_size * 4) |
|
stored_activations = batch_size * ctx_len * intermediate_size * 2 |
|
|
|
|
|
num_attention_heads = getattr(config, 'num_attention_heads', hidden_size // 64) |
|
attention_scores = batch_size * num_attention_heads * ctx_len * ctx_len |
|
|
|
|
|
total_activation_elements = io_activations + stored_activations + attention_scores |
|
|
|
|
|
activation_memory_gb = (total_activation_elements * 2) / (1024**3) |
|
|
|
|
|
max_reasonable_gb = max(5.0, ctx_len * batch_size / 10000) |
|
activation_memory_gb = min(activation_memory_gb, max_reasonable_gb) |
|
|
|
return max(0.5, activation_memory_gb) |
|
|
|
except Exception as e: |
|
print(f"Error estimating activation memory from config: {e}") |
|
|
|
try: |
|
|
|
fallback_gb = (num_users * ctx_len * 4096 * 4 * 2) / (1024**3) |
|
return min(10.0, max(0.5, fallback_gb)) |
|
except: |
|
return 2.0 |
|
|
|
def calculate_multi_gpu_configs(total_memory_needed, suitable_gpus): |
|
"""Calculate multi-GPU configurations for large models (power-of-2 for tensor parallelism)""" |
|
multi_gpu_configs = [] |
|
|
|
|
|
gpu_counts = [1, 2, 4, 8] |
|
|
|
|
|
gpus_to_check = suitable_gpus if total_memory_needed > 500 else suitable_gpus[:3] |
|
|
|
for gpu in gpus_to_check: |
|
for count in gpu_counts: |
|
total_gpu_memory = gpu["memory_gb"] * count |
|
|
|
if total_gpu_memory >= total_memory_needed: |
|
|
|
memory_per_gpu = total_memory_needed / count |
|
utilization = (memory_per_gpu / gpu["memory_gb"]) * 100 |
|
|
|
|
|
if count > 1 and utilization < 30: |
|
continue |
|
|
|
|
|
total_cost = gpu["price_usd"] * count |
|
cost_per_tflop_total = total_cost / (gpu["tflops_fp32"] * count) |
|
|
|
|
|
if count == 1: |
|
config_name = gpu['name'] |
|
else: |
|
config_name = f"{count}x {gpu['name']} (TP={count})" |
|
|
|
|
|
multi_gpu_configs.append({ |
|
"config": config_name, |
|
"gpu_count": count, |
|
"total_memory_gb": total_gpu_memory, |
|
"memory_per_gpu": memory_per_gpu, |
|
"utilization": utilization, |
|
"total_cost": total_cost, |
|
"cost_per_tflop": cost_per_tflop_total, |
|
"base_gpu": gpu |
|
}) |
|
|
|
|
|
if count == 1: |
|
break |
|
|
|
|
|
multi_gpu_configs.sort(key=lambda x: x["cost_per_tflop"]) |
|
|
|
return multi_gpu_configs[:8] |
|
|
|
def recommend_gpus(kv_cache_size_gb, config=None, dtype="fp16/bf16", ctx_len=128000, num_users=1): |
|
"""Recommend cost-effective GPU configurations (single and multi-GPU with tensor parallelism) for complete memory footprint""" |
|
if not kv_cache_size_gb or kv_cache_size_gb <= 0: |
|
print("DEBUG: KV cache size is 0 or invalid") |
|
return [] |
|
|
|
|
|
model_memory_gb = estimate_model_memory(config, dtype) |
|
activation_memory_gb = estimate_activation_memory(ctx_len, num_users, config) |
|
|
|
|
|
total_memory_needed = model_memory_gb + kv_cache_size_gb + activation_memory_gb + 1.0 |
|
|
|
print(f"DEBUG: Memory breakdown - Model: {model_memory_gb:.1f}GB, KV: {kv_cache_size_gb:.1f}GB, Activations: {activation_memory_gb:.1f}GB, Total: {total_memory_needed:.1f}GB") |
|
|
|
|
|
all_gpus = [] |
|
|
|
for gpu_name, specs in GPU_SPECS.items(): |
|
|
|
current_price = get_gpu_price(gpu_name) |
|
if current_price: |
|
cost_per_tflop = current_price / specs["tflops_fp32"] |
|
all_gpus.append({ |
|
"name": gpu_name, |
|
"memory_gb": specs["memory_gb"], |
|
"compute_capability": specs["compute_capability"], |
|
"tflops_fp32": specs["tflops_fp32"], |
|
"price_usd": current_price, |
|
"cost_per_tflop": cost_per_tflop, |
|
"category": specs.get("category", "Consumer") |
|
}) |
|
|
|
print(f"DEBUG: Found {len(all_gpus)} GPUs with pricing") |
|
|
|
if not all_gpus: |
|
print("DEBUG: No GPUs found with pricing") |
|
return [] |
|
|
|
|
|
all_gpus.sort(key=lambda x: x["cost_per_tflop"]) |
|
|
|
|
|
multi_gpu_configs = calculate_multi_gpu_configs(total_memory_needed, all_gpus) |
|
|
|
print(f"DEBUG: Generated {len(multi_gpu_configs)} GPU configurations") |
|
|
|
if not multi_gpu_configs: |
|
print("DEBUG: No valid GPU configurations found") |
|
return [] |
|
|
|
|
|
recommendations = [] |
|
for i, config in enumerate(multi_gpu_configs): |
|
rank = f"#{i+1}" |
|
|
|
price_source = "Live" if config["base_gpu"]["name"].lower().replace(" ", "_") in price_cache else "Est" |
|
|
|
|
|
config_display = f"{rank} {config['config']}" |
|
|
|
|
|
total_tflops = config["base_gpu"]["tflops_fp32"] * config["gpu_count"] |
|
flops_per_dollar = total_tflops / config['total_cost'] |
|
|
|
recommendations.append([ |
|
config_display, |
|
f"{flops_per_dollar:.3f}", |
|
f"{total_memory_needed:.1f}GB", |
|
f"${config['total_cost']:.0f}" |
|
]) |
|
|
|
return recommendations |
|
|
|
with gr.Blocks(title="KV Cache Calculator", theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# KV Cache Calculator") |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_search = gr.Textbox( |
|
label="🔍 Search Model", |
|
placeholder="Type your model ID here.", |
|
) |
|
|
|
model_dropdown = gr.Dropdown( |
|
label="📋 Select from Results", |
|
choices=[], |
|
value="", |
|
visible=False, |
|
info="Choose from search results" |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("**💡 Tip:** Type model names like 'llama', 'qwen', 'mistral', then press Enter to search") |
|
|
|
ctx_len = gr.Number(label="Context Length", value=128_000, minimum=1) |
|
num_users = gr.Number(label="Number of Users", value=1, minimum=1) |
|
dtype = gr.Dropdown( |
|
label="KV Cache Data Type", |
|
choices=["fp16/bf16", "fp8", "fp4"], |
|
value="fp16/bf16" |
|
) |
|
hf_token = gr.Textbox( |
|
label="HuggingFace Token (optional)", |
|
type="password", |
|
placeholder="For gated models" |
|
) |
|
|
|
calculate_btn = gr.Button("Calculate KV Cache Size", variant="primary") |
|
|
|
with gr.Column(): |
|
cache_size = gr.Number(label="KV Cache Size (GB)", precision=2) |
|
model_config = gr.Dataframe( |
|
label="Model Configuration", |
|
headers=["Parameter", "Value"], |
|
datatype=["str", "str"], |
|
wrap=True |
|
) |
|
|
|
gpu_recommendations = gr.Dataframe( |
|
label="GPU Recommendations", |
|
headers=["Configuration", "TFLOPS/$", "Memory", "Price"], |
|
datatype=["str", "str", "str", "str"], |
|
wrap=False, |
|
visible=False |
|
) |
|
|
|
model_search.submit( |
|
fn=search_models_on_submit, |
|
inputs=[model_search], |
|
outputs=[model_search, model_dropdown, calculate_btn], |
|
show_progress="minimal" |
|
) |
|
|
|
model_dropdown.change( |
|
fn=update_selection_from_dropdown, |
|
inputs=[model_dropdown], |
|
outputs=[model_search], |
|
show_progress=False |
|
) |
|
|
|
def calculate_and_show_gpus(model_name, ctx_len, num_users, dtype, hf_token): |
|
cache_size, model_config, gpu_recs = calculate(model_name, ctx_len, num_users, dtype, hf_token) |
|
|
|
print(f"DEBUG: GPU recommendations count: {len(gpu_recs) if gpu_recs else 0}") |
|
if gpu_recs: |
|
print(f"DEBUG: First recommendation: {gpu_recs[0] if gpu_recs else 'None'}") |
|
|
|
if gpu_recs: |
|
return ( |
|
cache_size, |
|
model_config, |
|
gr.Dataframe(value=gpu_recs, visible=True) |
|
) |
|
else: |
|
print("DEBUG: No GPU recommendations found, showing empty table") |
|
return ( |
|
cache_size, |
|
model_config, |
|
gr.Dataframe(value=[], visible=False) |
|
) |
|
|
|
calculate_btn.click( |
|
fn=calculate_and_show_gpus, |
|
inputs=[model_search, ctx_len, num_users, dtype, hf_token], |
|
outputs=[cache_size, model_config, gpu_recommendations] |
|
) |
|
|
|
demo.css = """ |
|
.gradio-container { |
|
max-width: 1400px !important; |
|
margin: 0 auto !important; |
|
} |
|
|
|
/* Make dataframes wider and prevent text wrapping */ |
|
.gradio-dataframe { |
|
width: 100% !important; |
|
min-width: 800px !important; |
|
} |
|
|
|
.gradio-dataframe table { |
|
width: 100% !important; |
|
table-layout: auto !important; |
|
} |
|
|
|
.gradio-dataframe td, .gradio-dataframe th { |
|
white-space: nowrap !important; |
|
padding: 8px 12px !important; |
|
text-overflow: ellipsis !important; |
|
min-width: 120px !important; |
|
} |
|
|
|
/* Style disabled textboxes to be clearly disabled */ |
|
.gradio-textbox:disabled, |
|
.gradio-textbox[aria-disabled="true"] { |
|
opacity: 0.6 !important; |
|
background-color: #f5f5f5 !important; |
|
color: #666 !important; |
|
cursor: not-allowed !important; |
|
border-color: #ccc !important; |
|
} |
|
|
|
/* Style placeholder text */ |
|
.gradio-textbox input::placeholder { |
|
color: #999 !important; |
|
font-style: italic; |
|
} |
|
|
|
/* Make disabled dropdowns more visually obvious */ |
|
.gradio-dropdown[data-testid="dropdown"]:disabled, |
|
.gradio-dropdown[data-testid="dropdown"][aria-disabled="true"] { |
|
opacity: 0.6 !important; |
|
background-color: #f5f5f5 !important; |
|
cursor: not-allowed !important; |
|
} |
|
|
|
/* Make disabled buttons more obvious too */ |
|
button:disabled { |
|
opacity: 0.5 !important; |
|
background-color: #e0e0e0 !important; |
|
cursor: not-allowed !important; |
|
} |
|
""" |
|
|
|
if __name__ == "__main__": |
|
|
|
start_price_preloading() |
|
|
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
share=False, |
|
show_error=True, |
|
allowed_paths=[], |
|
app_kwargs={"docs_url": None, "redoc_url": None} |
|
) |
|
|