AndreHathora's picture
updates
a38c422
import gradio as gr
from transformers import AutoConfig
from huggingface_hub import list_models
import asyncio
from typing import List
import time
from functools import lru_cache
import json
from datetime import datetime, timedelta
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
# Credits: This implementation is derived from and builds upon the excellent work by gaunernst
# Original implementation: https://huggingface.co/spaces/gaunernst/kv-cache-calculator
search_cache = {}
POPULAR_MODELS = [
"Qwen/Qwen3-30B-A3B",
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"microsoft/DialoGPT-medium",
"microsoft/DialoGPT-large",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"deepseek-ai/DeepSeek-V2-Chat",
"deepseek-ai/DeepSeek-V3-Base",
"google/gemma-2-9b",
"google/gemma-2-27b",
"Qwen/QwQ-32B-Preview",
"Qwen/Qwen2.5-72B-Instruct",
"anthropic/claude-3-haiku-20240307",
]
# Static GPU specifications (performance specs don't change, only prices do)
# All GPUs with SM_80+ compute capability (Flash Attention support)
GPU_SPECS = {
# Consumer RTX 30 Series (Ampere - GA102/GA104/GA106) - SM_8.6
"RTX 3060": {"memory_gb": 12, "compute_capability": "8.6", "tflops_fp32": 13.0, "category": "Consumer"},
"RTX 3060 Ti": {"memory_gb": 8, "compute_capability": "8.6", "tflops_fp32": 16.2, "category": "Consumer"},
"RTX 3070": {"memory_gb": 8, "compute_capability": "8.6", "tflops_fp32": 20.3, "category": "Consumer"},
"RTX 3070 Ti": {"memory_gb": 8, "compute_capability": "8.6", "tflops_fp32": 21.7, "category": "Consumer"},
"RTX 3080": {"memory_gb": 10, "compute_capability": "8.6", "tflops_fp32": 29.8, "category": "Consumer"},
"RTX 3080 Ti": {"memory_gb": 12, "compute_capability": "8.6", "tflops_fp32": 34.1, "category": "Consumer"},
"RTX 3090": {"memory_gb": 24, "compute_capability": "8.6", "tflops_fp32": 35.6, "category": "Consumer"},
"RTX 3090 Ti": {"memory_gb": 24, "compute_capability": "8.6", "tflops_fp32": 40.0, "category": "Consumer"},
# Consumer RTX 40 Series (Ada Lovelace - AD102/AD103/AD104/AD106/AD107) - SM_8.9
"RTX 4060": {"memory_gb": 8, "compute_capability": "8.9", "tflops_fp32": 15.1, "category": "Consumer"},
"RTX 4060 Ti": {"memory_gb": 8, "compute_capability": "8.9", "tflops_fp32": 22.1, "category": "Consumer"},
"RTX 4060 Ti 16GB": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 22.1, "category": "Consumer"},
"RTX 4070": {"memory_gb": 12, "compute_capability": "8.9", "tflops_fp32": 29.1, "category": "Consumer"},
"RTX 4070 Super": {"memory_gb": 12, "compute_capability": "8.9", "tflops_fp32": 35.5, "category": "Consumer"},
"RTX 4070 Ti": {"memory_gb": 12, "compute_capability": "8.9", "tflops_fp32": 40.1, "category": "Consumer"},
"RTX 4070 Ti Super": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 44.1, "category": "Consumer"},
"RTX 4080": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 48.7, "category": "Consumer"},
"RTX 4080 Super": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 52.2, "category": "Consumer"},
"RTX 4090": {"memory_gb": 24, "compute_capability": "8.9", "tflops_fp32": 83.0, "category": "Consumer"},
# Consumer RTX 50 Series (Blackwell - GB202/GB203/GB205/GB206/GB207) - SM_10.0
"RTX 5060": {"memory_gb": 8, "compute_capability": "10.0", "tflops_fp32": 18.5, "category": "Consumer"},
"RTX 5060 Ti": {"memory_gb": 16, "compute_capability": "10.0", "tflops_fp32": 28.2, "category": "Consumer"},
"RTX 5070": {"memory_gb": 12, "compute_capability": "10.0", "tflops_fp32": 35.1, "category": "Consumer"},
"RTX 5070 Ti": {"memory_gb": 16, "compute_capability": "10.0", "tflops_fp32": 48.3, "category": "Consumer"},
"RTX 5080": {"memory_gb": 16, "compute_capability": "10.0", "tflops_fp32": 60.5, "category": "Consumer"},
"RTX 5090": {"memory_gb": 32, "compute_capability": "10.0", "tflops_fp32": 125.0, "category": "Consumer"},
# Professional/Workstation RTX A Series (Ampere) - SM_8.6
"RTX A2000": {"memory_gb": 12, "compute_capability": "8.6", "tflops_fp32": 8.0, "category": "Workstation"},
"RTX A4000": {"memory_gb": 16, "compute_capability": "8.6", "tflops_fp32": 19.2, "category": "Workstation"},
"RTX A4500": {"memory_gb": 20, "compute_capability": "8.6", "tflops_fp32": 23.7, "category": "Workstation"},
"RTX A5000": {"memory_gb": 24, "compute_capability": "8.6", "tflops_fp32": 27.8, "category": "Workstation"},
"RTX A6000": {"memory_gb": 48, "compute_capability": "8.6", "tflops_fp32": 38.7, "category": "Workstation"},
# Professional RTX 6000 Ada (Ada Lovelace) - SM_8.9
"RTX 6000 Ada": {"memory_gb": 48, "compute_capability": "8.9", "tflops_fp32": 91.1, "category": "Workstation"},
# Datacenter A100 Series (Ampere) - SM_8.0
"A100 40GB": {"memory_gb": 40, "compute_capability": "8.0", "tflops_fp32": 19.5, "category": "Datacenter"},
"A100 80GB": {"memory_gb": 80, "compute_capability": "8.0", "tflops_fp32": 19.5, "category": "Datacenter"},
# Datacenter H100 Series (Hopper) - SM_9.0
"H100 80GB": {"memory_gb": 80, "compute_capability": "9.0", "tflops_fp32": 67.0, "category": "Datacenter"},
"H100 94GB": {"memory_gb": 94, "compute_capability": "9.0", "tflops_fp32": 67.0, "category": "Datacenter"},
# Datacenter H200 (Hopper) - SM_9.0
"H200 141GB": {"memory_gb": 141, "compute_capability": "9.0", "tflops_fp32": 67.0, "category": "Datacenter"},
# Datacenter B200 (Blackwell) - SM_10.0
"B200 180GB": {"memory_gb": 180, "compute_capability": "10.0", "tflops_fp32": 80.0, "category": "Datacenter"},
# Datacenter L40/L40S (Ada Lovelace) - SM_8.9
"L40": {"memory_gb": 48, "compute_capability": "8.9", "tflops_fp32": 91.6, "category": "Datacenter"},
"L40S": {"memory_gb": 48, "compute_capability": "8.9", "tflops_fp32": 91.6, "category": "Datacenter"},
}
# Price cache with timestamp
price_cache = {}
PRICE_CACHE_DURATION = timedelta(hours=6) # Cache prices for 6 hours
def fetch_single_gpu_price(gpu_name):
"""Fetch price for a single GPU (used in parallel)"""
try:
print(f"Fetching price for {gpu_name}...")
price = get_gpu_price(gpu_name)
if price:
print(f"Found price for {gpu_name}: ${price}")
return gpu_name, price
else:
print(f"✗ No price found for {gpu_name}, using fallback")
return gpu_name, get_fallback_price(gpu_name)
except Exception as e:
print(f"✗ Error fetching {gpu_name}: {e}")
return gpu_name, get_fallback_price(gpu_name)
def preload_gpu_prices():
"""Pre-fetch all GPU prices in parallel on startup"""
print("Pre-loading GPU prices...")
start_time = time.time()
# Get list of GPUs to price
gpu_names = list(GPU_SPECS.keys())
# Use ThreadPoolExecutor for parallel requests
with ThreadPoolExecutor(max_workers=8) as executor:
# Submit all price fetch tasks
future_to_gpu = {executor.submit(fetch_single_gpu_price, gpu_name): gpu_name
for gpu_name in gpu_names}
# Collect results as they complete
for future in as_completed(future_to_gpu):
gpu_name, price = future.result()
# Store in cache with timestamp
cache_key = gpu_name.lower().replace(" ", "_")
price_cache[cache_key] = {
"price": price,
"timestamp": datetime.now()
}
end_time = time.time()
total_time = end_time - start_time
print(f"Loaded prices for {len(gpu_names)} GPUs in {total_time:.1f} seconds")
print(f"Cache contains {len(price_cache)} price entries")
def start_price_preloading():
"""Start price preloading in background thread"""
def preload_worker():
preload_gpu_prices()
# Start preloading in background
preload_thread = threading.Thread(target=preload_worker, daemon=True)
preload_thread.start()
print("Price preloading started in background...")
def get_gpu_price(gpu_name):
"""Get GPU price from curated pricing data"""
current_time = datetime.now()
# Check cache first
cache_key = gpu_name.lower().replace(" ", "_")
if cache_key in price_cache:
cached_data = price_cache[cache_key]
if current_time - cached_data["timestamp"] < PRICE_CACHE_DURATION:
return cached_data["price"]
price = get_fallback_price(gpu_name)
# Cache the result
price_cache[cache_key] = {
"price": price,
"timestamp": current_time
}
return price
def get_fallback_price(gpu_name):
"""Curated GPU pricing data"""
fallback_prices = {
# Consumer RTX 30 Series
"RTX 3060": 280,
"RTX 3060 Ti": 320,
"RTX 3070": 420,
"RTX 3070 Ti": 480,
"RTX 3080": 580,
"RTX 3080 Ti": 720,
"RTX 3090": 950,
"RTX 3090 Ti": 1100,
# Consumer RTX 40 Series
"RTX 4060": 300,
"RTX 4060 Ti": 380,
"RTX 4060 Ti 16GB": 480,
"RTX 4070": 580,
"RTX 4070 Super": 680,
"RTX 4070 Ti": 780,
"RTX 4070 Ti Super": 880,
"RTX 4080": 980,
"RTX 4080 Super": 880,
"RTX 4090": 1500,
# Consumer RTX 50 Series (Expected pricing)
"RTX 5060": 400,
"RTX 5060 Ti": 600,
"RTX 5070": 800,
"RTX 5070 Ti": 1000,
"RTX 5080": 1200,
"RTX 5090": 2000,
# Professional/Workstation GPUs
"RTX A2000": 650,
"RTX A4000": 1200,
"RTX A4500": 2200,
"RTX A5000": 2800,
"RTX A6000": 4500,
"RTX 6000 Ada": 6800,
# Datacenter GPUs (current enterprise pricing)
"A100 40GB": 12000,
"A100 80GB": 15000,
"H100 80GB": 30000,
"H100 94GB": 35000,
"H200 141GB": 40000,
"B200 180GB": 50000,
"L40": 9000,
"L40S": 10000,
}
return fallback_prices.get(gpu_name, 1000)
def search_models_fast(query: str, max_results: int = 30) -> List[str]:
if not query or len(query.strip()) < 1:
return POPULAR_MODELS[:15]
query = query.strip()
cache_key = f"{query.lower()}_{max_results}"
current_time = time.time()
if cache_key in search_cache:
cached_result, cache_time = search_cache[cache_key]
if current_time - cache_time < 300:
return cached_result
try:
print(f"Searching HF Hub for: {query}")
all_matches = []
seen_models = set()
for model in POPULAR_MODELS:
if query.lower() in model.lower() and model not in seen_models:
all_matches.append(model)
seen_models.add(model)
models = list_models(
search=query,
task="text-generation",
library="transformers",
sort="downloads",
direction=-1,
limit=max_results,
full=False
)
for model in models:
if model.id not in seen_models and len(all_matches) < max_results:
all_matches.append(model.id)
seen_models.add(model.id)
result = all_matches[:max_results]
search_cache[cache_key] = (result, current_time)
if len(search_cache) > 15:
oldest_key = min(search_cache.keys(), key=lambda k: search_cache[k][1])
del search_cache[oldest_key]
return result
except Exception as e:
print(f"Search error: {e}")
popular_matches = [model for model in POPULAR_MODELS if query.lower() in model.lower()]
return popular_matches if popular_matches else POPULAR_MODELS[:15]
def calculate(name: str, ctx_len: int, num_users: int, dtype: str, hf_token: str):
if not name or not name.strip():
raise gr.Error("Please search for and select a model first")
name = name.strip()
hf_token = hf_token.strip()
try:
cfg = AutoConfig.from_pretrained(
name,
trust_remote_code=True,
token=hf_token or None,
)
except Exception as e:
raise gr.Error(e)
use_mla = cfg.architectures[0].startswith(("DeepseekV2", "DeepseekV3"))
if hasattr(cfg, "text_config"):
cfg = cfg.text_config
num_layers = cfg.num_hidden_layers
num_attention_heads = cfg.num_attention_heads
num_kv_heads = getattr(cfg, "num_key_value_heads", num_attention_heads)
if use_mla:
attention_type = "MLA"
elif num_kv_heads == num_attention_heads:
attention_type = "MHA"
else:
attention_type = "GQA"
model_config = [
["num_layers", num_layers],
["max_ctx_len", cfg.max_position_embeddings],
["attention_type", attention_type],
["num_attention_heads", num_attention_heads],
["num_kv_heads", num_kv_heads],
]
if ctx_len > cfg.max_position_embeddings:
gr.Warning(
"Requested context length is larger than the max value supported by the model"
)
if use_mla:
kv_lora_rank = cfg.kv_lora_rank
qk_rope_head_dim = cfg.qk_rope_head_dim
nelems_per_token = num_layers * (kv_lora_rank + qk_rope_head_dim)
model_config.append(["kv_lora_rank", kv_lora_rank])
model_config.append(["qk_rope_head_dim", qk_rope_head_dim])
model_config.append(["calc_formula", f"{num_layers} * ({kv_lora_rank} + {qk_rope_head_dim})"])
else:
head_dim = getattr(cfg, "head_dim", cfg.hidden_size // num_attention_heads)
nelems_per_token = num_layers * num_kv_heads * head_dim * 2
model_config.append(["head_dim", head_dim])
if attention_type == "GQA":
kv_ratio = num_attention_heads // num_kv_heads
model_config.append(["gqa_ratio", f"{kv_ratio}:1"])
model_config.append(["calc_formula", f"{num_layers} * {num_kv_heads} * {head_dim} * 2"])
if dtype == "fp16/bf16":
nbytes_per_elem = 2
elif dtype == "fp8":
nbytes_per_elem = 1 + 2 / cfg.hidden_size # assume per-token scaling
elif dtype == "fp4":
nbytes_per_elem = 0.5 + 2 / 32 # 4-bit weights + scaling factor every 32 elements (MXFP4)
kv_cache_size = nelems_per_token * ctx_len * num_users * nbytes_per_elem / 1e9
# Get GPU recommendations with complete memory analysis using actual config
gpu_recommendations = recommend_gpus(
kv_cache_size_gb=kv_cache_size,
config=cfg,
dtype=dtype,
ctx_len=ctx_len,
num_users=num_users
)
return kv_cache_size, model_config, gpu_recommendations
DESCRIPTION = (
"Calculate KV cache memory requirements for transformer models. "
"Supports MHA, GQA, and MLA attention mechanisms with fp16/bf16, fp8, and fp4 data types."
)
def search_models_on_submit(search_query):
if not search_query or len(search_query.strip()) < 2:
return [
gr.Textbox(interactive=True),
gr.Dropdown(choices=[], value="", visible=False),
gr.Button(interactive=True)
]
query_stripped = search_query.strip()
search_results = search_models_fast(query_stripped, max_results=30)
if query_stripped not in search_results:
search_results.insert(0, query_stripped)
return [
gr.Textbox(interactive=True, value=query_stripped),
gr.Dropdown(
choices=search_results,
value=query_stripped,
visible=True,
info=f"Found {len(search_results)} models - select one"
),
gr.Button(interactive=True)
]
def update_selection_from_dropdown(dropdown_value):
return gr.Textbox(value=dropdown_value)
def estimate_model_memory(config, dtype):
"""Estimate model weight memory requirements in GB using actual config object"""
try:
if not config:
return 5.0 # Default fallback
# Extract parameters for calculation
num_layers = getattr(config, 'num_hidden_layers', getattr(config, 'num_layers', 32))
hidden_size = getattr(config, 'hidden_size', getattr(config, 'd_model', 4096))
vocab_size = getattr(config, 'vocab_size', 50000)
intermediate_size = getattr(config, 'intermediate_size', hidden_size * 4)
# DeepSeek V3 specific parameter calculation following the exact formula
# Check if this is DeepSeek V3 architecture
is_deepseek_v3 = (getattr(config, 'model_type', '') == 'deepseek_v3' or
any('deepseek' in arch.lower() for arch in getattr(config, 'architectures', [])))
if is_deepseek_v3 and hasattr(config, 'q_lora_rank'):
# DeepSeek V3 specific calculation
# Config constants
L = num_layers # 61
H = hidden_size # 7168
I = intermediate_size # 18432
I_moe = getattr(config, 'moe_intermediate_size', 2048) # 2048
n_h = getattr(config, 'num_attention_heads', 128) # 128
r_q = getattr(config, 'q_lora_rank', 1536) # 1536
r_kv = getattr(config, 'kv_lora_rank', 512) # 512
V = vocab_size # 129,280
# Additional config values
qk_nope_head_dim = getattr(config, 'qk_nope_head_dim', 128)
qk_rope_head_dim = getattr(config, 'qk_rope_head_dim', 64)
v_head_dim = getattr(config, 'v_head_dim', 128)
# Attention per layer calculation
# W_q,a: H × r_q
w_q_a = H * r_q
# W_q,b: r_q × n_h × (qk_nope + qk_rope)
w_q_b = r_q * n_h * (qk_nope_head_dim + qk_rope_head_dim)
# W_kv,a: H × (r_kv + qk_rope)
w_kv_a = H * (r_kv + qk_rope_head_dim)
# W_kv,b: r_kv × n_h × (qk_nope + v)
w_kv_b = r_kv * n_h * (qk_nope_head_dim + v_head_dim)
# W_o: (n_h × v) × H
w_o = (n_h * v_head_dim) * H
attention_per_layer = w_q_a + w_q_b + w_kv_a + w_kv_b + w_o
total_attention = L * attention_per_layer
# Dense FFN layers (first 3 layers)
dense_ffn_per_layer = 3 * H * I # 3 projections: gate, up, down
total_dense_ffn = 3 * dense_ffn_per_layer # 3 dense layers
# MoE FFN layers (remaining 58 layers)
moe_ffn_per_expert = 3 * H * I_moe
n_routed_experts = getattr(config, 'n_routed_experts', 256) # 256
n_shared_experts = getattr(config, 'n_shared_experts', 1) # 1
experts_per_moe_layer = n_routed_experts + n_shared_experts # 257
moe_ffn_per_layer = experts_per_moe_layer * moe_ffn_per_expert
moe_layers = L - 3 # 58 MoE layers
total_moe_ffn = moe_layers * moe_ffn_per_layer
# Embeddings + LM head (untied)
embeddings_and_head = 2 * V * H
# Total parameters
total_params = total_attention + total_dense_ffn + total_moe_ffn + embeddings_and_head
print(f"DEBUG: DeepSeek V3 parameter breakdown:")
print(f" Attention ({L} layers): {total_attention/1e9:.2f}B")
print(f" Dense FFN (3 layers): {total_dense_ffn/1e9:.2f}B")
print(f" MoE FFN ({moe_layers} layers): {total_moe_ffn/1e9:.2f}B")
print(f" Embeddings + Head: {embeddings_and_head/1e9:.2f}B")
print(f" Total calculated: {total_params/1e9:.1f}B parameters")
else:
# Fallback to standard transformer calculation for other models
num_attention_heads = getattr(config, 'num_attention_heads', hidden_size // 64)
num_kv_heads = getattr(config, 'num_key_value_heads', num_attention_heads)
head_dim = getattr(config, 'head_dim', hidden_size // num_attention_heads)
# Standard attention calculation
q_params = hidden_size * (num_attention_heads * head_dim)
kv_params = hidden_size * (num_kv_heads * head_dim) * 2
o_params = (num_attention_heads * head_dim) * hidden_size
attention_params_per_layer = q_params + kv_params + o_params
attention_params = num_layers * attention_params_per_layer
# Standard FFN calculation
ffn_params = num_layers * (2 * hidden_size * intermediate_size + intermediate_size * hidden_size)
# Embeddings
embedding_params = vocab_size * hidden_size
# Other parameters
other_params = num_layers * 2 * hidden_size + hidden_size
total_params = embedding_params + attention_params + ffn_params + other_params
print(f"DEBUG: Standard transformer parameter breakdown:")
print(f" Embeddings: {embedding_params/1e9:.1f}B")
print(f" Attention: {attention_params/1e9:.1f}B")
print(f" FFN: {ffn_params/1e9:.1f}B")
print(f" Other: {other_params/1e9:.1f}B")
print(f" Total calculated: {total_params/1e9:.1f}B parameters")
# Convert to memory based on user-selected dtype
if dtype == "fp16/bf16":
bytes_per_param = 2
elif dtype == "fp8":
bytes_per_param = 1
elif dtype == "fp4":
bytes_per_param = 0.5
else:
bytes_per_param = 4 # fp32 fallback
model_memory_gb = (total_params * bytes_per_param) / (1024**3)
# Add minimal overhead (5% for loading)
model_memory_gb *= 1.05
return model_memory_gb
except Exception as e:
print(f"Error estimating model memory from config: {e}")
return 70.0 # Conservative fallback for large models
def estimate_activation_memory(ctx_len, num_users, config):
"""Estimate activation memory requirements in GB using actual config object"""
try:
if not config:
return 1.0 # Default fallback
# Extract parameters directly from config object
hidden_size = getattr(config, 'hidden_size', getattr(config, 'd_model', 4096))
batch_size = num_users
# For inference, activations are much smaller than training
# Only need to store activations for current forward pass, not gradients
# 1. Input/output activations: batch_size * ctx_len * hidden_size
io_activations = batch_size * ctx_len * hidden_size
# 2. Intermediate activations (only a few layers worth, not all)
# Most activations are computed and immediately used, not stored
intermediate_size = getattr(config, 'intermediate_size', hidden_size * 4)
stored_activations = batch_size * ctx_len * intermediate_size * 2 # Only ~2 layers worth
# 3. Attention scores for current layer (not all layers stored)
num_attention_heads = getattr(config, 'num_attention_heads', hidden_size // 64)
attention_scores = batch_size * num_attention_heads * ctx_len * ctx_len
# Total activation elements (much smaller for inference)
total_activation_elements = io_activations + stored_activations + attention_scores
# Convert to memory (fp16 = 2 bytes per element)
activation_memory_gb = (total_activation_elements * 2) / (1024**3)
# Cap at reasonable values for inference (activations shouldn't dominate)
max_reasonable_gb = max(5.0, ctx_len * batch_size / 10000) # Reasonable scaling
activation_memory_gb = min(activation_memory_gb, max_reasonable_gb)
return max(0.5, activation_memory_gb) # At least 500MB
except Exception as e:
print(f"Error estimating activation memory from config: {e}")
# Simple fallback based on context length
try:
# Much simpler formula for inference
fallback_gb = (num_users * ctx_len * 4096 * 4 * 2) / (1024**3) # Conservative
return min(10.0, max(0.5, fallback_gb)) # Cap at 10GB
except:
return 2.0 # Default 2GB
def calculate_multi_gpu_configs(total_memory_needed, suitable_gpus):
"""Calculate multi-GPU configurations for large models (power-of-2 for tensor parallelism)"""
multi_gpu_configs = []
# Power-of-2 configurations for tensor parallelism (TP) - max 8 for practical use
gpu_counts = [1, 2, 4, 8] # Only powers of 2, max 8 GPUs
# For large models, check all high-memory GPUs, not just top 3 cost-effective ones
gpus_to_check = suitable_gpus if total_memory_needed > 500 else suitable_gpus[:3]
for gpu in gpus_to_check:
for count in gpu_counts:
total_gpu_memory = gpu["memory_gb"] * count
if total_gpu_memory >= total_memory_needed:
# Calculate per-GPU memory utilization
memory_per_gpu = total_memory_needed / count
utilization = (memory_per_gpu / gpu["memory_gb"]) * 100
# Skip very inefficient configurations (< 30% utilization for multi-GPU)
if count > 1 and utilization < 30:
continue
# Calculate total cost
total_cost = gpu["price_usd"] * count
cost_per_tflop_total = total_cost / (gpu["tflops_fp32"] * count)
# Format configuration name with TP indication
if count == 1:
config_name = gpu['name']
else:
config_name = f"{count}x {gpu['name']} (TP={count})"
multi_gpu_configs.append({
"config": config_name,
"gpu_count": count,
"total_memory_gb": total_gpu_memory,
"memory_per_gpu": memory_per_gpu,
"utilization": utilization,
"total_cost": total_cost,
"cost_per_tflop": cost_per_tflop_total,
"base_gpu": gpu
})
# For single GPU, only add once
if count == 1:
break
# Sort by cost-effectiveness (total cost per TFLOP)
multi_gpu_configs.sort(key=lambda x: x["cost_per_tflop"])
return multi_gpu_configs[:8] # Return top 8 configurations
def recommend_gpus(kv_cache_size_gb, config=None, dtype="fp16/bf16", ctx_len=128000, num_users=1):
"""Recommend cost-effective GPU configurations (single and multi-GPU with tensor parallelism) for complete memory footprint"""
if not kv_cache_size_gb or kv_cache_size_gb <= 0:
print("DEBUG: KV cache size is 0 or invalid")
return []
# Calculate complete memory footprint using actual config object
model_memory_gb = estimate_model_memory(config, dtype)
activation_memory_gb = estimate_activation_memory(ctx_len, num_users, config)
# Total memory = Model weights + KV cache + Activations + Safety buffer
total_memory_needed = model_memory_gb + kv_cache_size_gb + activation_memory_gb + 1.0 # 1GB safety buffer
print(f"DEBUG: Memory breakdown - Model: {model_memory_gb:.1f}GB, KV: {kv_cache_size_gb:.1f}GB, Activations: {activation_memory_gb:.1f}GB, Total: {total_memory_needed:.1f}GB")
# Get all GPUs with real pricing (from cache or live fetch)
all_gpus = []
for gpu_name, specs in GPU_SPECS.items():
# Get real-time price (will use cache if available)
current_price = get_gpu_price(gpu_name)
if current_price:
cost_per_tflop = current_price / specs["tflops_fp32"]
all_gpus.append({
"name": gpu_name,
"memory_gb": specs["memory_gb"],
"compute_capability": specs["compute_capability"],
"tflops_fp32": specs["tflops_fp32"],
"price_usd": current_price,
"cost_per_tflop": cost_per_tflop,
"category": specs.get("category", "Consumer")
})
print(f"DEBUG: Found {len(all_gpus)} GPUs with pricing")
if not all_gpus:
print("DEBUG: No GPUs found with pricing")
return []
# Sort by cost-effectiveness for single GPU evaluation
all_gpus.sort(key=lambda x: x["cost_per_tflop"])
# Calculate multi-GPU configurations
multi_gpu_configs = calculate_multi_gpu_configs(total_memory_needed, all_gpus)
print(f"DEBUG: Generated {len(multi_gpu_configs)} GPU configurations")
if not multi_gpu_configs:
print("DEBUG: No valid GPU configurations found")
return []
# Format recommendations
recommendations = []
for i, config in enumerate(multi_gpu_configs):
rank = f"#{i+1}"
price_source = "Live" if config["base_gpu"]["name"].lower().replace(" ", "_") in price_cache else "Est"
# Format configuration display
config_display = f"{rank} {config['config']}"
# Calculate FLOP/dollar (TFLOPS per dollar)
total_tflops = config["base_gpu"]["tflops_fp32"] * config["gpu_count"]
flops_per_dollar = total_tflops / config['total_cost']
recommendations.append([
config_display,
f"{flops_per_dollar:.3f}",
f"{total_memory_needed:.1f}GB",
f"${config['total_cost']:.0f}"
])
return recommendations
with gr.Blocks(title="KV Cache Calculator", theme=gr.themes.Soft()) as demo:
gr.Markdown("# KV Cache Calculator")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
model_search = gr.Textbox(
label="🔍 Search Model",
placeholder="Type your model ID here.",
)
model_dropdown = gr.Dropdown(
label="📋 Select from Results",
choices=[],
value="",
visible=False,
info="Choose from search results"
)
with gr.Row():
gr.Markdown("**💡 Tip:** Type model names like 'llama', 'qwen', 'mistral', then press Enter to search")
ctx_len = gr.Number(label="Context Length", value=128_000, minimum=1)
num_users = gr.Number(label="Number of Users", value=1, minimum=1)
dtype = gr.Dropdown(
label="KV Cache Data Type",
choices=["fp16/bf16", "fp8", "fp4"],
value="fp16/bf16"
)
hf_token = gr.Textbox(
label="HuggingFace Token (optional)",
type="password",
placeholder="For gated models"
)
calculate_btn = gr.Button("Calculate KV Cache Size", variant="primary")
with gr.Column():
cache_size = gr.Number(label="KV Cache Size (GB)", precision=2)
model_config = gr.Dataframe(
label="Model Configuration",
headers=["Parameter", "Value"],
datatype=["str", "str"],
wrap=True
)
gpu_recommendations = gr.Dataframe(
label="GPU Recommendations",
headers=["Configuration", "TFLOPS/$", "Memory", "Price"],
datatype=["str", "str", "str", "str"],
wrap=False,
visible=False
)
model_search.submit(
fn=search_models_on_submit,
inputs=[model_search],
outputs=[model_search, model_dropdown, calculate_btn],
show_progress="minimal"
)
model_dropdown.change(
fn=update_selection_from_dropdown,
inputs=[model_dropdown],
outputs=[model_search],
show_progress=False
)
def calculate_and_show_gpus(model_name, ctx_len, num_users, dtype, hf_token):
cache_size, model_config, gpu_recs = calculate(model_name, ctx_len, num_users, dtype, hf_token)
print(f"DEBUG: GPU recommendations count: {len(gpu_recs) if gpu_recs else 0}")
if gpu_recs:
print(f"DEBUG: First recommendation: {gpu_recs[0] if gpu_recs else 'None'}")
if gpu_recs:
return (
cache_size,
model_config,
gr.Dataframe(value=gpu_recs, visible=True)
)
else:
print("DEBUG: No GPU recommendations found, showing empty table")
return (
cache_size,
model_config,
gr.Dataframe(value=[], visible=False)
)
calculate_btn.click(
fn=calculate_and_show_gpus,
inputs=[model_search, ctx_len, num_users, dtype, hf_token],
outputs=[cache_size, model_config, gpu_recommendations]
)
demo.css = """
.gradio-container {
max-width: 1400px !important;
margin: 0 auto !important;
}
/* Make dataframes wider and prevent text wrapping */
.gradio-dataframe {
width: 100% !important;
min-width: 800px !important;
}
.gradio-dataframe table {
width: 100% !important;
table-layout: auto !important;
}
.gradio-dataframe td, .gradio-dataframe th {
white-space: nowrap !important;
padding: 8px 12px !important;
text-overflow: ellipsis !important;
min-width: 120px !important;
}
/* Style disabled textboxes to be clearly disabled */
.gradio-textbox:disabled,
.gradio-textbox[aria-disabled="true"] {
opacity: 0.6 !important;
background-color: #f5f5f5 !important;
color: #666 !important;
cursor: not-allowed !important;
border-color: #ccc !important;
}
/* Style placeholder text */
.gradio-textbox input::placeholder {
color: #999 !important;
font-style: italic;
}
/* Make disabled dropdowns more visually obvious */
.gradio-dropdown[data-testid="dropdown"]:disabled,
.gradio-dropdown[data-testid="dropdown"][aria-disabled="true"] {
opacity: 0.6 !important;
background-color: #f5f5f5 !important;
cursor: not-allowed !important;
}
/* Make disabled buttons more obvious too */
button:disabled {
opacity: 0.5 !important;
background-color: #e0e0e0 !important;
cursor: not-allowed !important;
}
"""
if __name__ == "__main__":
# Start price preloading in background before launching the app
start_price_preloading()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
allowed_paths=[],
app_kwargs={"docs_url": None, "redoc_url": None}
)