Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from diffusers import QwenImagePipeline
|
7 |
+
# from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
+
# from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
+
|
10 |
+
dtype = torch.bfloat16
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
#black-forest-labs/FLUX.1-Krea-dev
|
13 |
+
#black-forest-labs/FLUX.1-dev
|
14 |
+
|
15 |
+
|
16 |
+
# Load the model pipeline
|
17 |
+
pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
|
18 |
+
|
19 |
+
torch.cuda.empty_cache()
|
20 |
+
|
21 |
+
MAX_SEED = np.iinfo(np.int32).max
|
22 |
+
MAX_IMAGE_SIZE = 2048
|
23 |
+
|
24 |
+
# pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
25 |
+
|
26 |
+
@spaces.GPU()
|
27 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
|
28 |
+
if randomize_seed:
|
29 |
+
seed = random.randint(0, MAX_SEED)
|
30 |
+
generator = torch.Generator().manual_seed(seed)
|
31 |
+
|
32 |
+
|
33 |
+
# for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
34 |
+
# prompt=prompt,
|
35 |
+
# guidance_scale=guidance_scale,
|
36 |
+
# num_inference_steps=num_inference_steps,
|
37 |
+
# width=width,
|
38 |
+
# height=height,
|
39 |
+
# generator=generator,
|
40 |
+
# output_type="pil",
|
41 |
+
# good_vae=good_vae,
|
42 |
+
# ):
|
43 |
+
# yield img, seed
|
44 |
+
|
45 |
+
# Handle LoRA loading
|
46 |
+
# Load LoRA weights and prepare joint_attention_kwargs
|
47 |
+
if lora_id and lora_id.strip() != "":
|
48 |
+
pipe.unload_lora_weights()
|
49 |
+
pipe.load_lora_weights(lora_id.strip())
|
50 |
+
# joint_attention_kwargs = {"scale": lora_scale}
|
51 |
+
# else:
|
52 |
+
# joint_attention_kwargs = None
|
53 |
+
|
54 |
+
try:
|
55 |
+
image = pipe(
|
56 |
+
prompt=prompt,
|
57 |
+
negative_prompt="",
|
58 |
+
width=width,
|
59 |
+
height=height,
|
60 |
+
num_inference_steps=num_inference_steps,
|
61 |
+
generator=generator,
|
62 |
+
true_cfg_scale=guidance_scale,
|
63 |
+
guidance_scale=1.0 # Use a fixed default for distilled guidance
|
64 |
+
).images[0]
|
65 |
+
return image, seed
|
66 |
+
finally:
|
67 |
+
# Unload LoRA weights if they were loaded
|
68 |
+
if lora_id:
|
69 |
+
pipe.unload_lora_weights()
|
70 |
+
|
71 |
+
examples = [
|
72 |
+
"a tiny astronaut hatching from an egg on the moon",
|
73 |
+
"a cat holding a sign that says hello world",
|
74 |
+
"an anime illustration of a wiener schnitzel",
|
75 |
+
]
|
76 |
+
|
77 |
+
css = """
|
78 |
+
#col-container {
|
79 |
+
margin: 0 auto;
|
80 |
+
max-width: 960px;
|
81 |
+
}
|
82 |
+
.generate-btn {
|
83 |
+
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
|
84 |
+
border: none !important;
|
85 |
+
color: white !important;
|
86 |
+
}
|
87 |
+
.generate-btn:hover {
|
88 |
+
transform: translateY(-2px);
|
89 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
90 |
+
}
|
91 |
+
"""
|
92 |
+
|
93 |
+
with gr.Blocks(css=css) as app:
|
94 |
+
gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
|
95 |
+
with gr.Column(elem_id="col-container"):
|
96 |
+
with gr.Row():
|
97 |
+
with gr.Column():
|
98 |
+
with gr.Row():
|
99 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
|
100 |
+
with gr.Row():
|
101 |
+
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Accordion("Advanced Settings", open=False):
|
104 |
+
lora_scale = gr.Slider(
|
105 |
+
label="LoRA Scale",
|
106 |
+
minimum=0,
|
107 |
+
maximum=2,
|
108 |
+
step=0.01,
|
109 |
+
value=0.95,
|
110 |
+
)
|
111 |
+
with gr.Row():
|
112 |
+
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=2048, step=8)
|
113 |
+
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=2048, step=8)
|
114 |
+
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
|
115 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
116 |
+
with gr.Row():
|
117 |
+
steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1)
|
118 |
+
cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
119 |
+
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
# text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
123 |
+
text_button = gr.Button("✨ Generate Image", variant='primary', elem_classes=["generate-btn"])
|
124 |
+
with gr.Column():
|
125 |
+
with gr.Row():
|
126 |
+
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
127 |
+
|
128 |
+
# gr.Markdown(article_text)
|
129 |
+
with gr.Column():
|
130 |
+
gr.Examples(
|
131 |
+
examples = examples,
|
132 |
+
inputs = [text_prompt],
|
133 |
+
)
|
134 |
+
gr.on(
|
135 |
+
triggers=[text_button.click, text_prompt.submit],
|
136 |
+
fn = infer,
|
137 |
+
inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale],
|
138 |
+
outputs=[image_output, seed]
|
139 |
+
)
|
140 |
+
|
141 |
+
# text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
|
142 |
+
# text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])
|
143 |
+
|
144 |
+
app.launch(share=True)
|