Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,467 Bytes
2d767e1 967924e 2d767e1 dbac20f c4dd2de 432e503 c4dd2de 2d767e1 c4dd2de dbac20f 432e503 dbac20f 432e503 2d767e1 dbac20f 432e503 dbac20f 432e503 2d767e1 26a3d78 2d767e1 26a3d78 2d767e1 dbac20f 2d767e1 432e503 2d767e1 dbac20f 2d767e1 432e503 dbac20f 2d767e1 d6a6a48 2d767e1 b0ec3f5 432e503 2d767e1 dbac20f 2d767e1 432e503 dbac20f 2d767e1 dbac20f 2d767e1 432e503 2d767e1 dbac20f 2d767e1 6a6682f 2d767e1 6a6682f 2d767e1 432e503 2d767e1 a82f1b3 2d767e1 dbac20f 2d767e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import torchaudio
import os
import gc
# MMAudio imports
try:
import mmaudio
except ImportError:
os.system("pip install -e .")
import mmaudio
# Set environment variables for better memory management
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
os.environ['HF_HUB_CACHE'] = '/tmp/hub' # Use temp directory to avoid filling persistent storage
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils
# Clean up temp files periodically
def cleanup_temp_files():
"""Clean up temporary files to save storage"""
temp_dir = tempfile.gettempdir()
for filename in os.listdir(temp_dir):
filepath = os.path.join(temp_dir, filename)
try:
if filename.endswith(('.mp4', '.flac', '.wav')):
os.remove(filepath)
except:
pass
# Video generation model setup
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()
# Audio generation model setup
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
log = logging.getLogger()
device = 'cuda'
dtype = torch.bfloat16
# Global variables for audio model (loaded on demand)
audio_model = None
audio_net = None
audio_feature_utils = None
audio_seq_cfg = None
def load_audio_model():
"""Load audio model on demand to save storage"""
global audio_model, audio_net, audio_feature_utils, audio_seq_cfg
if audio_net is None:
audio_model = all_model_cfg['small_16k'] # Use smaller model
audio_model.download_if_needed()
setup_eval_logging()
seq_cfg = audio_model.seq_cfg
net = get_my_mmaudio(audio_model.model_name).to(device, dtype).eval()
net.load_weights(torch.load(audio_model.model_path, map_location=device, weights_only=True))
log.info(f'Loaded weights from {audio_model.model_path}')
feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model.vae_path,
synchformer_ckpt=audio_model.synchformer_ckpt,
enable_conditions=True,
mode=audio_model.mode,
bigvgan_vocoder_ckpt=audio_model.bigvgan_16k_path,
need_vae_encoder=False)
feature_utils = feature_utils.to(device, dtype).eval()
audio_net = net
audio_feature_utils = feature_utils
audio_seq_cfg = seq_cfg
return audio_net, audio_feature_utils, audio_seq_cfg
# Constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 320
DEFAULT_W_SLIDER_VALUE = 560
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 120
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
default_audio_prompt = ""
default_audio_negative_prompt = "music"
# CSS
custom_css = """
/* μ 체 λ°°κ²½ κ·ΈλΌλμΈνΈ */
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #fa709a 100%) !important;
background-size: 400% 400% !important;
animation: gradientShift 15s ease infinite !important;
}
@keyframes gradientShift {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
/* λ©μΈ 컨ν
μ΄λ μ€νμΌ */
.main-container {
backdrop-filter: blur(10px);
background: rgba(255, 255, 255, 0.1) !important;
border-radius: 20px !important;
padding: 30px !important;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37) !important;
border: 1px solid rgba(255, 255, 255, 0.18) !important;
}
/* ν€λ μ€νμΌ */
h1 {
background: linear-gradient(45deg, #ffffff, #f0f0f0) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
font-weight: 800 !important;
font-size: 2.5rem !important;
text-align: center !important;
margin-bottom: 2rem !important;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1) !important;
}
/* μ»΄ν¬λνΈ μ»¨ν
μ΄λ μ€νμΌ */
.input-container, .output-container {
background: rgba(255, 255, 255, 0.08) !important;
border-radius: 15px !important;
padding: 20px !important;
margin: 10px 0 !important;
backdrop-filter: blur(5px) !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
}
/* μ
λ ₯ νλ μ€νμΌ */
input, textarea, .gr-box {
background: rgba(255, 255, 255, 0.9) !important;
border: 1px solid rgba(255, 255, 255, 0.3) !important;
border-radius: 10px !important;
color: #333 !important;
transition: all 0.3s ease !important;
}
input:focus, textarea:focus {
background: rgba(255, 255, 255, 1) !important;
border-color: #667eea !important;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}
/* λ²νΌ μ€νμΌ */
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
font-weight: 600 !important;
font-size: 1.1rem !important;
padding: 12px 30px !important;
border-radius: 50px !important;
border: none !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
}
.generate-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important;
}
/* μ¬λΌμ΄λ μ€νμΌ */
input[type="range"] {
background: transparent !important;
}
input[type="range"]::-webkit-slider-track {
background: rgba(255, 255, 255, 0.3) !important;
border-radius: 5px !important;
height: 6px !important;
}
input[type="range"]::-webkit-slider-thumb {
background: linear-gradient(135deg, #667eea, #764ba2) !important;
border: 2px solid white !important;
border-radius: 50% !important;
cursor: pointer !important;
width: 18px !important;
height: 18px !important;
-webkit-appearance: none !important;
}
/* Accordion μ€νμΌ */
.gr-accordion {
background: rgba(255, 255, 255, 0.05) !important;
border-radius: 10px !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
margin: 15px 0 !important;
}
/* λΌλ²¨ μ€νμΌ */
label {
color: #ffffff !important;
font-weight: 500 !important;
font-size: 0.95rem !important;
margin-bottom: 5px !important;
}
/* μ΄λ―Έμ§ μ
λ‘λ μμ */
.image-upload {
border: 2px dashed rgba(255, 255, 255, 0.3) !important;
border-radius: 15px !important;
background: rgba(255, 255, 255, 0.05) !important;
transition: all 0.3s ease !important;
}
.image-upload:hover {
border-color: rgba(255, 255, 255, 0.5) !important;
background: rgba(255, 255, 255, 0.1) !important;
}
/* λΉλμ€ μΆλ ₯ μμ */
video {
border-radius: 15px !important;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important;
}
/* Examples μΉμ
μ€νμΌ */
.gr-examples {
background: rgba(255, 255, 255, 0.05) !important;
border-radius: 15px !important;
padding: 20px !important;
margin-top: 20px !important;
}
/* Checkbox μ€νμΌ */
input[type="checkbox"] {
accent-color: #667eea !important;
}
/* Radio λ²νΌ μ€νμΌ */
input[type="radio"] {
accent-color: #667eea !important;
}
/* λ°μν μ λλ©μ΄μ
*/
@media (max-width: 768px) {
h1 { font-size: 2rem !important; }
.main-container { padding: 20px !important; }
}
"""
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def clear_cache():
"""Clear GPU and CPU cache to free memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
def get_duration(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
audio_mode, audio_prompt, audio_negative_prompt,
audio_seed, audio_steps, audio_cfg_strength,
progress):
base_duration = 60
if steps > 4 and duration_seconds > 2:
base_duration = 90
elif steps > 4 or duration_seconds > 2:
base_duration = 75
# Add extra time for audio generation
if audio_mode == "Enable Audio":
base_duration += 60
return base_duration
@torch.inference_mode()
def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt,
audio_seed, audio_steps, audio_cfg_strength):
"""Add audio to video using MMAudio"""
# Load audio model on demand
net, feature_utils, seq_cfg = load_audio_model()
rng = torch.Generator(device=device)
if audio_seed >= 0:
rng.manual_seed(audio_seed)
else:
rng.seed()
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
video_info = load_video(video_path, duration_sec)
clip_frames = video_info.clip_frames.unsqueeze(0)
sync_frames = video_info.sync_frames.unsqueeze(0)
duration = video_info.duration_sec
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
audios = generate(clip_frames,
sync_frames, [audio_prompt],
negative_text=[audio_negative_prompt],
feature_utils=feature_utils,
net=net,
fm=fm,
rng=rng,
cfg_strength=audio_cfg_strength)
audio = audios.float().cpu()[0]
# Save video with audio
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
make_video(video_info, video_with_audio_path, audio, sampling_rate=seq_cfg.sampling_rate)
return video_with_audio_path
@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
audio_mode, audio_prompt, audio_negative_prompt,
audio_seed, audio_steps, audio_cfg_strength,
progress=gr.Progress(track_tqdm=True)):
if input_image is None:
raise gr.Error("Please upload an input image.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h))
# Generate video
with torch.inference_mode():
output_frames_list = pipe(
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
# Save video without audio
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
# Generate audio if enabled
video_with_audio_path = None
if audio_mode == "Enable Audio":
progress(0.5, desc="Generating audio...")
video_with_audio_path = add_audio_to_video(
video_path, duration_seconds,
audio_prompt, audio_negative_prompt,
audio_seed, audio_steps, audio_cfg_strength
)
# Clear cache to free memory
clear_cache()
cleanup_temp_files() # Clean up temp files
return video_path, video_with_audio_path, current_seed
def update_audio_visibility(audio_mode):
"""Update visibility of audio-related components"""
return gr.update(visible=(audio_mode == "Enable Audio"))
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes=["main-container"]):
gr.Markdown("# β¨ Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA + Audio")
# Add badges side by side
gr.HTML("""
<div class="badge-container">
<a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank">
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=FAST%20%26%20Furios&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/WAN-VIDEO-AUDIO" target="_blank">
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=VIDEO%20%26%20AUDIO&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
</div>
""")
with gr.Row():
with gr.Column(elem_classes=["input-container"]):
input_image_component = gr.Image(
type="pil",
label="πΌοΈ Input Image (auto-resized to target H/W)",
elem_classes=["image-upload"]
)
prompt_input = gr.Textbox(
label="βοΈ Prompt",
value=default_prompt_i2v,
lines=2
)
duration_seconds_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
step=0.1,
value=2,
label="β±οΈ Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
# Audio mode radio button
audio_mode = gr.Radio(
choices=["Video Only", "Enable Audio"],
value="Video Only",
label="π΅ Audio Mode",
info="Enable to add audio to your generated video"
)
# Audio settings (initially hidden)
with gr.Column(visible=False) as audio_settings:
audio_prompt = gr.Textbox(
label="π΅ Audio Prompt",
value=default_audio_prompt,
placeholder="Describe the audio you want (e.g., 'waves, seagulls', 'footsteps on gravel')",
lines=2
)
audio_negative_prompt = gr.Textbox(
label="β Audio Negative Prompt",
value=default_audio_negative_prompt,
lines=2
)
with gr.Row():
audio_seed = gr.Number(
label="π² Audio Seed",
value=-1,
precision=0,
minimum=-1
)
audio_steps = gr.Slider(
minimum=1,
maximum=50,
step=1,
value=25,
label="π Audio Steps"
)
audio_cfg_strength = gr.Slider(
minimum=1.0,
maximum=10.0,
step=0.5,
value=4.5,
label="π― Audio Guidance"
)
with gr.Accordion("βοΈ Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(
label="β Negative Prompt",
value=default_negative_prompt,
lines=3
)
seed_input = gr.Slider(
label="π² Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
interactive=True
)
randomize_seed_checkbox = gr.Checkbox(
label="π Randomize seed",
value=True,
interactive=True
)
with gr.Row():
height_input = gr.Slider(
minimum=SLIDER_MIN_H,
maximum=SLIDER_MAX_H,
step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"π Output Height (multiple of {MOD_VALUE})"
)
width_input = gr.Slider(
minimum=SLIDER_MIN_W,
maximum=SLIDER_MAX_W,
step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"π Output Width (multiple of {MOD_VALUE})"
)
steps_slider = gr.Slider(
minimum=1,
maximum=30,
step=1,
value=4,
label="π Inference Steps"
)
guidance_scale_input = gr.Slider(
minimum=0.0,
maximum=20.0,
step=0.5,
value=1.0,
label="π― Guidance Scale",
visible=False
)
generate_button = gr.Button(
"π¬ Generate Video",
variant="primary",
elem_classes=["generate-btn"]
)
with gr.Column(elem_classes=["output-container"]):
video_output = gr.Video(
label="π₯ Generated Video",
autoplay=True,
interactive=False
)
video_with_audio_output = gr.Video(
label="π₯ Generated Video with Audio",
autoplay=True,
interactive=False,
visible=False
)
# Event handlers
audio_mode.change(
fn=update_audio_visibility,
inputs=[audio_mode],
outputs=[audio_settings, video_with_audio_output]
)
input_image_component.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
input_image_component.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
ui_inputs = [
input_image_component, prompt_input, height_input, width_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox,
audio_mode, audio_prompt, audio_negative_prompt,
audio_seed, audio_steps, audio_cfg_strength
]
generate_button.click(
fn=generate_video,
inputs=ui_inputs,
outputs=[video_output, video_with_audio_output, seed_input]
)
with gr.Column():
gr.Examples(
examples=[
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512,
default_negative_prompt, 2, 1.0, 4, 42, False,
"Video Only", "", default_audio_negative_prompt, -1, 25, 4.5],
["forg.jpg", "the frog jumps around", 448, 832,
default_negative_prompt, 2, 1.0, 4, 42, False,
"Enable Audio", "frog croaking, water splashing", default_audio_negative_prompt, -1, 25, 4.5],
],
inputs=ui_inputs,
outputs=[video_output, video_with_audio_output, seed_input],
fn=generate_video,
cache_examples="lazy",
label="π Example Gallery"
)
if __name__ == "__main__":
demo.queue().launch() |