File size: 24,467 Bytes
2d767e1
 
 
 
 
 
967924e
2d767e1
 
 
 
dbac20f
 
c4dd2de
432e503
c4dd2de
2d767e1
c4dd2de
 
 
 
 
dbac20f
432e503
 
 
 
dbac20f
 
 
 
 
 
 
432e503
 
 
 
 
 
 
 
 
 
 
 
2d767e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
 
 
 
 
 
 
432e503
 
 
 
 
dbac20f
432e503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d767e1
 
 
26a3d78
 
2d767e1
 
 
 
 
 
 
 
26a3d78
2d767e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
2d767e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432e503
 
 
 
 
 
 
2d767e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
 
2d767e1
 
 
432e503
 
 
dbac20f
2d767e1
 
d6a6a48
 
2d767e1
 
 
 
 
 
b0ec3f5
432e503
 
2d767e1
dbac20f
2d767e1
 
432e503
 
dbac20f
 
2d767e1
dbac20f
2d767e1
 
 
432e503
2d767e1
 
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
2d767e1
 
6a6682f
2d767e1
6a6682f
2d767e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432e503
 
 
 
2d767e1
 
 
 
 
 
 
 
 
a82f1b3
 
 
 
 
 
 
 
 
 
 
 
2d767e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
 
2d767e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import torchaudio
import os
import gc

# MMAudio imports
try:
    import mmaudio
except ImportError:
    os.system("pip install -e .")
    import mmaudio

# Set environment variables for better memory management
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
os.environ['HF_HUB_CACHE'] = '/tmp/hub'  # Use temp directory to avoid filling persistent storage

from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
                                setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils

# Clean up temp files periodically
def cleanup_temp_files():
    """Clean up temporary files to save storage"""
    temp_dir = tempfile.gettempdir()
    for filename in os.listdir(temp_dir):
        filepath = os.path.join(temp_dir, filename)
        try:
            if filename.endswith(('.mp4', '.flac', '.wav')):
                os.remove(filepath)
        except:
            pass

# Video generation model setup
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"

image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()

# Audio generation model setup
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

log = logging.getLogger()
device = 'cuda'
dtype = torch.bfloat16

# Global variables for audio model (loaded on demand)
audio_model = None
audio_net = None
audio_feature_utils = None
audio_seq_cfg = None

def load_audio_model():
    """Load audio model on demand to save storage"""
    global audio_model, audio_net, audio_feature_utils, audio_seq_cfg
    
    if audio_net is None:
        audio_model = all_model_cfg['small_16k']  # Use smaller model
        audio_model.download_if_needed()
        setup_eval_logging()
        
        seq_cfg = audio_model.seq_cfg
        net = get_my_mmaudio(audio_model.model_name).to(device, dtype).eval()
        net.load_weights(torch.load(audio_model.model_path, map_location=device, weights_only=True))
        log.info(f'Loaded weights from {audio_model.model_path}')

        feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model.vae_path,
                                      synchformer_ckpt=audio_model.synchformer_ckpt,
                                      enable_conditions=True,
                                      mode=audio_model.mode,
                                      bigvgan_vocoder_ckpt=audio_model.bigvgan_16k_path,
                                      need_vae_encoder=False)
        feature_utils = feature_utils.to(device, dtype).eval()
        
        audio_net = net
        audio_feature_utils = feature_utils
        audio_seq_cfg = seq_cfg
    
    return audio_net, audio_feature_utils, audio_seq_cfg

# Constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 320
DEFAULT_W_SLIDER_VALUE = 560
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 

SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 120

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
default_audio_prompt = ""
default_audio_negative_prompt = "music"

# CSS
custom_css = """
/* 전체 λ°°κ²½ κ·ΈλΌλ””μ–ΈνŠΈ */
.gradio-container {
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #fa709a 100%) !important;
    background-size: 400% 400% !important;
    animation: gradientShift 15s ease infinite !important;
}

@keyframes gradientShift {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}

/* 메인 μ»¨ν…Œμ΄λ„ˆ μŠ€νƒ€μΌ */
.main-container {
    backdrop-filter: blur(10px);
    background: rgba(255, 255, 255, 0.1) !important;
    border-radius: 20px !important;
    padding: 30px !important;
    box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37) !important;
    border: 1px solid rgba(255, 255, 255, 0.18) !important;
}

/* 헀더 μŠ€νƒ€μΌ */
h1 {
    background: linear-gradient(45deg, #ffffff, #f0f0f0) !important;
    -webkit-background-clip: text !important;
    -webkit-text-fill-color: transparent !important;
    background-clip: text !important;
    font-weight: 800 !important;
    font-size: 2.5rem !important;
    text-align: center !important;
    margin-bottom: 2rem !important;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.1) !important;
}

/* μ»΄ν¬λ„ŒνŠΈ μ»¨ν…Œμ΄λ„ˆ μŠ€νƒ€μΌ */
.input-container, .output-container {
    background: rgba(255, 255, 255, 0.08) !important;
    border-radius: 15px !important;
    padding: 20px !important;
    margin: 10px 0 !important;
    backdrop-filter: blur(5px) !important;
    border: 1px solid rgba(255, 255, 255, 0.1) !important;
}

/* μž…λ ₯ ν•„λ“œ μŠ€νƒ€μΌ */
input, textarea, .gr-box {
    background: rgba(255, 255, 255, 0.9) !important;
    border: 1px solid rgba(255, 255, 255, 0.3) !important;
    border-radius: 10px !important;
    color: #333 !important;
    transition: all 0.3s ease !important;
}

input:focus, textarea:focus {
    background: rgba(255, 255, 255, 1) !important;
    border-color: #667eea !important;
    box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}

/* λ²„νŠΌ μŠ€νƒ€μΌ */
.generate-btn {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    color: white !important;
    font-weight: 600 !important;
    font-size: 1.1rem !important;
    padding: 12px 30px !important;
    border-radius: 50px !important;
    border: none !important;
    cursor: pointer !important;
    transition: all 0.3s ease !important;
    box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
}

.generate-btn:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important;
}

/* μŠ¬λΌμ΄λ” μŠ€νƒ€μΌ */
input[type="range"] {
    background: transparent !important;
}

input[type="range"]::-webkit-slider-track {
    background: rgba(255, 255, 255, 0.3) !important;
    border-radius: 5px !important;
    height: 6px !important;
}

input[type="range"]::-webkit-slider-thumb {
    background: linear-gradient(135deg, #667eea, #764ba2) !important;
    border: 2px solid white !important;
    border-radius: 50% !important;
    cursor: pointer !important;
    width: 18px !important;
    height: 18px !important;
    -webkit-appearance: none !important;
}

/* Accordion μŠ€νƒ€μΌ */
.gr-accordion {
    background: rgba(255, 255, 255, 0.05) !important;
    border-radius: 10px !important;
    border: 1px solid rgba(255, 255, 255, 0.1) !important;
    margin: 15px 0 !important;
}

/* 라벨 μŠ€νƒ€μΌ */
label {
    color: #ffffff !important;
    font-weight: 500 !important;
    font-size: 0.95rem !important;
    margin-bottom: 5px !important;
}

/* 이미지 μ—…λ‘œλ“œ μ˜μ—­ */
.image-upload {
    border: 2px dashed rgba(255, 255, 255, 0.3) !important;
    border-radius: 15px !important;
    background: rgba(255, 255, 255, 0.05) !important;
    transition: all 0.3s ease !important;
}

.image-upload:hover {
    border-color: rgba(255, 255, 255, 0.5) !important;
    background: rgba(255, 255, 255, 0.1) !important;
}

/* λΉ„λ””μ˜€ 좜λ ₯ μ˜μ—­ */
video {
    border-radius: 15px !important;
    box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important;
}

/* Examples μ„Ήμ…˜ μŠ€νƒ€μΌ */
.gr-examples {
    background: rgba(255, 255, 255, 0.05) !important;
    border-radius: 15px !important;
    padding: 20px !important;
    margin-top: 20px !important;
}

/* Checkbox μŠ€νƒ€μΌ */
input[type="checkbox"] {
    accent-color: #667eea !important;
}

/* Radio λ²„νŠΌ μŠ€νƒ€μΌ */
input[type="radio"] {
    accent-color: #667eea !important;
}

/* λ°˜μ‘ν˜• μ• λ‹ˆλ©”μ΄μ…˜ */
@media (max-width: 768px) {
    h1 { font-size: 2rem !important; }
    .main-container { padding: 20px !important; }
}
"""

def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                 min_slider_h, max_slider_h,
                                 min_slider_w, max_slider_w,
                                 default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w

    aspect_ratio = orig_h / orig_w
    
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))

    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    
    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error attempting to calculate new dimensions")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)

def clear_cache():
    """Clear GPU and CPU cache to free memory"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()
    gc.collect()

def get_duration(input_image, prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed,
                   audio_mode, audio_prompt, audio_negative_prompt,
                   audio_seed, audio_steps, audio_cfg_strength,
                   progress):
    base_duration = 60
    if steps > 4 and duration_seconds > 2:
        base_duration = 90
    elif steps > 4 or duration_seconds > 2:
        base_duration = 75
    
    # Add extra time for audio generation
    if audio_mode == "Enable Audio":
        base_duration += 60
    
    return base_duration

@torch.inference_mode()
def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt, 
                      audio_seed, audio_steps, audio_cfg_strength):
    """Add audio to video using MMAudio"""
    # Load audio model on demand
    net, feature_utils, seq_cfg = load_audio_model()
    
    rng = torch.Generator(device=device)
    if audio_seed >= 0:
        rng.manual_seed(audio_seed)
    else:
        rng.seed()
    
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
    
    video_info = load_video(video_path, duration_sec)
    clip_frames = video_info.clip_frames.unsqueeze(0)
    sync_frames = video_info.sync_frames.unsqueeze(0)
    duration = video_info.duration_sec
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
    
    audios = generate(clip_frames,
                      sync_frames, [audio_prompt],
                      negative_text=[audio_negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=audio_cfg_strength)
    audio = audios.float().cpu()[0]
    
    # Save video with audio
    video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
    make_video(video_info, video_with_audio_path, audio, sampling_rate=seq_cfg.sampling_rate)
    
    return video_with_audio_path

@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed,
                   audio_mode, audio_prompt, audio_negative_prompt,
                   audio_seed, audio_steps, audio_cfg_strength,
                   progress=gr.Progress(track_tqdm=True)):
    
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    resized_image = input_image.resize((target_w, target_h))

    # Generate video
    with torch.inference_mode():
        output_frames_list = pipe(
            image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
            height=target_h, width=target_w, num_frames=num_frames,
            guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    # Save video without audio
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    
    # Generate audio if enabled
    video_with_audio_path = None
    if audio_mode == "Enable Audio":
        progress(0.5, desc="Generating audio...")
        video_with_audio_path = add_audio_to_video(
            video_path, duration_seconds, 
            audio_prompt, audio_negative_prompt,
            audio_seed, audio_steps, audio_cfg_strength
        )
    
    # Clear cache to free memory
    clear_cache()
    cleanup_temp_files()  # Clean up temp files
    
    return video_path, video_with_audio_path, current_seed

def update_audio_visibility(audio_mode):
    """Update visibility of audio-related components"""
    return gr.update(visible=(audio_mode == "Enable Audio"))

with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_classes=["main-container"]):
        gr.Markdown("# ✨ Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA + Audio")

        # Add badges side by side
        gr.HTML("""
        <div class="badge-container">
            <a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank">
                <img src="https://img.shields.io/static/v1?label=WAN%202.1&message=FAST%20%26%20Furios&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
            </a>
            <a href="https://huggingface.co/spaces/Heartsync/WAN-VIDEO-AUDIO" target="_blank">
                <img src="https://img.shields.io/static/v1?label=WAN%202.1&message=VIDEO%20%26%20AUDIO&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
            </a>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(elem_classes=["input-container"]):
                input_image_component = gr.Image(
                    type="pil", 
                    label="πŸ–ΌοΈ Input Image (auto-resized to target H/W)",
                    elem_classes=["image-upload"]
                )
                prompt_input = gr.Textbox(
                    label="✏️ Prompt", 
                    value=default_prompt_i2v,
                    lines=2
                )
                duration_seconds_input = gr.Slider(
                    minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), 
                    maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), 
                    step=0.1, 
                    value=2, 
                    label="⏱️ Duration (seconds)", 
                    info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
                )
                
                # Audio mode radio button
                audio_mode = gr.Radio(
                    choices=["Video Only", "Enable Audio"],
                    value="Video Only",
                    label="🎡 Audio Mode",
                    info="Enable to add audio to your generated video"
                )
                
                # Audio settings (initially hidden)
                with gr.Column(visible=False) as audio_settings:
                    audio_prompt = gr.Textbox(
                        label="🎡 Audio Prompt",
                        value=default_audio_prompt,
                        placeholder="Describe the audio you want (e.g., 'waves, seagulls', 'footsteps on gravel')",
                        lines=2
                    )
                    audio_negative_prompt = gr.Textbox(
                        label="❌ Audio Negative Prompt",
                        value=default_audio_negative_prompt,
                        lines=2
                    )
                    with gr.Row():
                        audio_seed = gr.Number(
                            label="🎲 Audio Seed",
                            value=-1,
                            precision=0,
                            minimum=-1
                        )
                        audio_steps = gr.Slider(
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=25,
                            label="πŸš€ Audio Steps"
                        )
                        audio_cfg_strength = gr.Slider(
                            minimum=1.0,
                            maximum=10.0,
                            step=0.5,
                            value=4.5,
                            label="🎯 Audio Guidance"
                        )
                
                with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                    negative_prompt_input = gr.Textbox(
                        label="❌ Negative Prompt", 
                        value=default_negative_prompt, 
                        lines=3
                    )
                    seed_input = gr.Slider(
                        label="🎲 Seed", 
                        minimum=0, 
                        maximum=MAX_SEED, 
                        step=1, 
                        value=42, 
                        interactive=True
                    )
                    randomize_seed_checkbox = gr.Checkbox(
                        label="πŸ”€ Randomize seed", 
                        value=True, 
                        interactive=True
                    )
                    with gr.Row():
                        height_input = gr.Slider(
                            minimum=SLIDER_MIN_H, 
                            maximum=SLIDER_MAX_H, 
                            step=MOD_VALUE, 
                            value=DEFAULT_H_SLIDER_VALUE, 
                            label=f"πŸ“ Output Height (multiple of {MOD_VALUE})"
                        )
                        width_input = gr.Slider(
                            minimum=SLIDER_MIN_W, 
                            maximum=SLIDER_MAX_W, 
                            step=MOD_VALUE, 
                            value=DEFAULT_W_SLIDER_VALUE, 
                            label=f"πŸ“ Output Width (multiple of {MOD_VALUE})"
                        )
                    steps_slider = gr.Slider(
                        minimum=1, 
                        maximum=30, 
                        step=1, 
                        value=4, 
                        label="πŸš€ Inference Steps"
                    ) 
                    guidance_scale_input = gr.Slider(
                        minimum=0.0, 
                        maximum=20.0, 
                        step=0.5, 
                        value=1.0, 
                        label="🎯 Guidance Scale", 
                        visible=False
                    )

                generate_button = gr.Button(
                    "🎬 Generate Video", 
                    variant="primary",
                    elem_classes=["generate-btn"]
                )
                
            with gr.Column(elem_classes=["output-container"]):
                video_output = gr.Video(
                    label="πŸŽ₯ Generated Video", 
                    autoplay=True, 
                    interactive=False
                )
                video_with_audio_output = gr.Video(
                    label="πŸŽ₯ Generated Video with Audio",
                    autoplay=True,
                    interactive=False,
                    visible=False
                )

        # Event handlers
        audio_mode.change(
            fn=update_audio_visibility,
            inputs=[audio_mode],
            outputs=[audio_settings, video_with_audio_output]
        )
        
        input_image_component.upload(
            fn=handle_image_upload_for_dims_wan,
            inputs=[input_image_component, height_input, width_input],
            outputs=[height_input, width_input]
        )
        
        input_image_component.clear( 
            fn=handle_image_upload_for_dims_wan,
            inputs=[input_image_component, height_input, width_input],
            outputs=[height_input, width_input]
        )
        
        ui_inputs = [
            input_image_component, prompt_input, height_input, width_input,
            negative_prompt_input, duration_seconds_input,
            guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox,
            audio_mode, audio_prompt, audio_negative_prompt,
            audio_seed, audio_steps, audio_cfg_strength
        ]
        generate_button.click(
            fn=generate_video, 
            inputs=ui_inputs, 
            outputs=[video_output, video_with_audio_output, seed_input]
        )

        with gr.Column():
            gr.Examples(
                examples=[ 
                    ["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512, 
                     default_negative_prompt, 2, 1.0, 4, 42, False, 
                     "Video Only", "", default_audio_negative_prompt, -1, 25, 4.5],
                    ["forg.jpg", "the frog jumps around", 448, 832,
                     default_negative_prompt, 2, 1.0, 4, 42, False,
                     "Enable Audio", "frog croaking, water splashing", default_audio_negative_prompt, -1, 25, 4.5],
                ],
                inputs=ui_inputs, 
                outputs=[video_output, video_with_audio_output, seed_input], 
                fn=generate_video, 
                cache_examples="lazy",
                label="🌟 Example Gallery"
            )

if __name__ == "__main__":
    demo.queue().launch()