import torch from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler from diffusers.utils import export_to_video from transformers import CLIPVisionModel import gradio as gr import tempfile import spaces from huggingface_hub import hf_hub_download import numpy as np from PIL import Image import random import logging import torchaudio import os import gc # MMAudio imports try: import mmaudio except ImportError: os.system("pip install -e .") import mmaudio # Set environment variables for better memory management os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512' os.environ['HF_HUB_CACHE'] = '/tmp/hub' # Use temp directory to avoid filling persistent storage from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video, setup_eval_logging) from mmaudio.model.flow_matching import FlowMatching from mmaudio.model.networks import MMAudio, get_my_mmaudio from mmaudio.model.sequence_config import SequenceConfig from mmaudio.model.utils.features_utils import FeaturesUtils # Clean up temp files periodically def cleanup_temp_files(): """Clean up temporary files to save storage""" temp_dir = tempfile.gettempdir() for filename in os.listdir(temp_dir): filepath = os.path.join(temp_dir, filename) try: if filename.endswith(('.mp4', '.flac', '.wav')): os.remove(filepath) except: pass # Video generation model setup MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" LORA_REPO_ID = "Kijai/WanVideo_comfy" LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32) vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) pipe = WanImageToVideoPipeline.from_pretrained( MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) pipe.to("cuda") causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95]) pipe.fuse_lora() # Audio generation model setup torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True log = logging.getLogger() device = 'cuda' dtype = torch.bfloat16 # Global variables for audio model (loaded on demand) audio_model = None audio_net = None audio_feature_utils = None audio_seq_cfg = None def load_audio_model(): """Load audio model on demand to save storage""" global audio_model, audio_net, audio_feature_utils, audio_seq_cfg if audio_net is None: audio_model = all_model_cfg['small_16k'] # Use smaller model audio_model.download_if_needed() setup_eval_logging() seq_cfg = audio_model.seq_cfg net = get_my_mmaudio(audio_model.model_name).to(device, dtype).eval() net.load_weights(torch.load(audio_model.model_path, map_location=device, weights_only=True)) log.info(f'Loaded weights from {audio_model.model_path}') feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model.vae_path, synchformer_ckpt=audio_model.synchformer_ckpt, enable_conditions=True, mode=audio_model.mode, bigvgan_vocoder_ckpt=audio_model.bigvgan_16k_path, need_vae_encoder=False) feature_utils = feature_utils.to(device, dtype).eval() audio_net = net audio_feature_utils = feature_utils audio_seq_cfg = seq_cfg return audio_net, audio_feature_utils, audio_seq_cfg # Constants MOD_VALUE = 32 DEFAULT_H_SLIDER_VALUE = 320 DEFAULT_W_SLIDER_VALUE = 560 NEW_FORMULA_MAX_AREA = 480.0 * 832.0 SLIDER_MIN_H, SLIDER_MAX_H = 128, 896 SLIDER_MIN_W, SLIDER_MAX_W = 128, 896 MAX_SEED = np.iinfo(np.int32).max FIXED_FPS = 24 MIN_FRAMES_MODEL = 8 MAX_FRAMES_MODEL = 120 default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" default_audio_prompt = "" default_audio_negative_prompt = "music" # CSS custom_css = """ /* 전체 배경 그라디언트 */ .gradio-container { font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important; background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #fa709a 100%) !important; background-size: 400% 400% !important; animation: gradientShift 15s ease infinite !important; } @keyframes gradientShift { 0% { background-position: 0% 50%; } 50% { background-position: 100% 50%; } 100% { background-position: 0% 50%; } } /* 메인 컨테이너 스타일 */ .main-container { backdrop-filter: blur(10px); background: rgba(255, 255, 255, 0.1) !important; border-radius: 20px !important; padding: 30px !important; box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37) !important; border: 1px solid rgba(255, 255, 255, 0.18) !important; } /* 헤더 스타일 */ h1 { background: linear-gradient(45deg, #ffffff, #f0f0f0) !important; -webkit-background-clip: text !important; -webkit-text-fill-color: transparent !important; background-clip: text !important; font-weight: 800 !important; font-size: 2.5rem !important; text-align: center !important; margin-bottom: 2rem !important; text-shadow: 2px 2px 4px rgba(0,0,0,0.1) !important; } /* 컴포넌트 컨테이너 스타일 */ .input-container, .output-container { background: rgba(255, 255, 255, 0.08) !important; border-radius: 15px !important; padding: 20px !important; margin: 10px 0 !important; backdrop-filter: blur(5px) !important; border: 1px solid rgba(255, 255, 255, 0.1) !important; } /* 입력 필드 스타일 */ input, textarea, .gr-box { background: rgba(255, 255, 255, 0.9) !important; border: 1px solid rgba(255, 255, 255, 0.3) !important; border-radius: 10px !important; color: #333 !important; transition: all 0.3s ease !important; } input:focus, textarea:focus { background: rgba(255, 255, 255, 1) !important; border-color: #667eea !important; box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important; } /* 버튼 스타일 */ .generate-btn { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; color: white !important; font-weight: 600 !important; font-size: 1.1rem !important; padding: 12px 30px !important; border-radius: 50px !important; border: none !important; cursor: pointer !important; transition: all 0.3s ease !important; box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important; } .generate-btn:hover { transform: translateY(-2px) !important; box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important; } /* 슬라이더 스타일 */ input[type="range"] { background: transparent !important; } input[type="range"]::-webkit-slider-track { background: rgba(255, 255, 255, 0.3) !important; border-radius: 5px !important; height: 6px !important; } input[type="range"]::-webkit-slider-thumb { background: linear-gradient(135deg, #667eea, #764ba2) !important; border: 2px solid white !important; border-radius: 50% !important; cursor: pointer !important; width: 18px !important; height: 18px !important; -webkit-appearance: none !important; } /* Accordion 스타일 */ .gr-accordion { background: rgba(255, 255, 255, 0.05) !important; border-radius: 10px !important; border: 1px solid rgba(255, 255, 255, 0.1) !important; margin: 15px 0 !important; } /* 라벨 스타일 */ label { color: #ffffff !important; font-weight: 500 !important; font-size: 0.95rem !important; margin-bottom: 5px !important; } /* 이미지 업로드 영역 */ .image-upload { border: 2px dashed rgba(255, 255, 255, 0.3) !important; border-radius: 15px !important; background: rgba(255, 255, 255, 0.05) !important; transition: all 0.3s ease !important; } .image-upload:hover { border-color: rgba(255, 255, 255, 0.5) !important; background: rgba(255, 255, 255, 0.1) !important; } /* 비디오 출력 영역 */ video { border-radius: 15px !important; box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important; } /* Examples 섹션 스타일 */ .gr-examples { background: rgba(255, 255, 255, 0.05) !important; border-radius: 15px !important; padding: 20px !important; margin-top: 20px !important; } /* Checkbox 스타일 */ input[type="checkbox"] { accent-color: #667eea !important; } /* Radio 버튼 스타일 */ input[type="radio"] { accent-color: #667eea !important; } /* 반응형 애니메이션 */ @media (max-width: 768px) { h1 { font-size: 2rem !important; } .main-container { padding: 20px !important; } } """ def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, min_slider_h, max_slider_h, min_slider_w, max_slider_w, default_h, default_w): orig_w, orig_h = pil_image.size if orig_w <= 0 or orig_h <= 0: return default_h, default_w aspect_ratio = orig_h / orig_w calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) calc_h = max(mod_val, (calc_h // mod_val) * mod_val) calc_w = max(mod_val, (calc_w // mod_val) * mod_val) new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) return new_h, new_w def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val): if uploaded_pil_image is None: return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) try: new_h, new_w = _calculate_new_dimensions_wan( uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE ) return gr.update(value=new_h), gr.update(value=new_w) except Exception as e: gr.Warning("Error attempting to calculate new dimensions") return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) def clear_cache(): """Clear GPU and CPU cache to free memory""" if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.synchronize() gc.collect() def get_duration(input_image, prompt, height, width, negative_prompt, duration_seconds, guidance_scale, steps, seed, randomize_seed, audio_mode, audio_prompt, audio_negative_prompt, audio_seed, audio_steps, audio_cfg_strength, progress): base_duration = 60 if steps > 4 and duration_seconds > 2: base_duration = 90 elif steps > 4 or duration_seconds > 2: base_duration = 75 # Add extra time for audio generation if audio_mode == "Enable Audio": base_duration += 60 return base_duration @torch.inference_mode() def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt, audio_seed, audio_steps, audio_cfg_strength): """Add audio to video using MMAudio""" # Load audio model on demand net, feature_utils, seq_cfg = load_audio_model() rng = torch.Generator(device=device) if audio_seed >= 0: rng.manual_seed(audio_seed) else: rng.seed() fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps) video_info = load_video(video_path, duration_sec) clip_frames = video_info.clip_frames.unsqueeze(0) sync_frames = video_info.sync_frames.unsqueeze(0) duration = video_info.duration_sec seq_cfg.duration = duration net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) audios = generate(clip_frames, sync_frames, [audio_prompt], negative_text=[audio_negative_prompt], feature_utils=feature_utils, net=net, fm=fm, rng=rng, cfg_strength=audio_cfg_strength) audio = audios.float().cpu()[0] # Save video with audio video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name make_video(video_info, video_with_audio_path, audio, sampling_rate=seq_cfg.sampling_rate) return video_with_audio_path @spaces.GPU(duration=get_duration) def generate_video(input_image, prompt, height, width, negative_prompt, duration_seconds, guidance_scale, steps, seed, randomize_seed, audio_mode, audio_prompt, audio_negative_prompt, audio_seed, audio_steps, audio_cfg_strength, progress=gr.Progress(track_tqdm=True)): if input_image is None: raise gr.Error("Please upload an input image.") target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) resized_image = input_image.resize((target_w, target_h)) # Generate video with torch.inference_mode(): output_frames_list = pipe( image=resized_image, prompt=prompt, negative_prompt=negative_prompt, height=target_h, width=target_w, num_frames=num_frames, guidance_scale=float(guidance_scale), num_inference_steps=int(steps), generator=torch.Generator(device="cuda").manual_seed(current_seed) ).frames[0] # Save video without audio with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: video_path = tmpfile.name export_to_video(output_frames_list, video_path, fps=FIXED_FPS) # Generate audio if enabled video_with_audio_path = None if audio_mode == "Enable Audio": progress(0.5, desc="Generating audio...") video_with_audio_path = add_audio_to_video( video_path, duration_seconds, audio_prompt, audio_negative_prompt, audio_seed, audio_steps, audio_cfg_strength ) # Clear cache to free memory clear_cache() cleanup_temp_files() # Clean up temp files return video_path, video_with_audio_path, current_seed def update_audio_visibility(audio_mode): """Update visibility of audio-related components""" return gr.update(visible=(audio_mode == "Enable Audio")) with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: with gr.Column(elem_classes=["main-container"]): gr.Markdown("# ✨ Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA + Audio") # Add badges side by side gr.HTML("""
""") with gr.Row(): with gr.Column(elem_classes=["input-container"]): input_image_component = gr.Image( type="pil", label="🖼️ Input Image (auto-resized to target H/W)", elem_classes=["image-upload"] ) prompt_input = gr.Textbox( label="✏️ Prompt", value=default_prompt_i2v, lines=2 ) duration_seconds_input = gr.Slider( minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="⏱️ Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." ) # Audio mode radio button audio_mode = gr.Radio( choices=["Video Only", "Enable Audio"], value="Video Only", label="🎵 Audio Mode", info="Enable to add audio to your generated video" ) # Audio settings (initially hidden) with gr.Column(visible=False) as audio_settings: audio_prompt = gr.Textbox( label="🎵 Audio Prompt", value=default_audio_prompt, placeholder="Describe the audio you want (e.g., 'waves, seagulls', 'footsteps on gravel')", lines=2 ) audio_negative_prompt = gr.Textbox( label="❌ Audio Negative Prompt", value=default_audio_negative_prompt, lines=2 ) with gr.Row(): audio_seed = gr.Number( label="🎲 Audio Seed", value=-1, precision=0, minimum=-1 ) audio_steps = gr.Slider( minimum=1, maximum=50, step=1, value=25, label="🚀 Audio Steps" ) audio_cfg_strength = gr.Slider( minimum=1.0, maximum=10.0, step=0.5, value=4.5, label="🎯 Audio Guidance" ) with gr.Accordion("⚙️ Advanced Settings", open=False): negative_prompt_input = gr.Textbox( label="❌ Negative Prompt", value=default_negative_prompt, lines=3 ) seed_input = gr.Slider( label="🎲 Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True ) randomize_seed_checkbox = gr.Checkbox( label="🔀 Randomize seed", value=True, interactive=True ) with gr.Row(): height_input = gr.Slider( minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"📏 Output Height (multiple of {MOD_VALUE})" ) width_input = gr.Slider( minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"📐 Output Width (multiple of {MOD_VALUE})" ) steps_slider = gr.Slider( minimum=1, maximum=30, step=1, value=4, label="🚀 Inference Steps" ) guidance_scale_input = gr.Slider( minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="🎯 Guidance Scale", visible=False ) generate_button = gr.Button( "🎬 Generate Video", variant="primary", elem_classes=["generate-btn"] ) with gr.Column(elem_classes=["output-container"]): video_output = gr.Video( label="🎥 Generated Video", autoplay=True, interactive=False ) video_with_audio_output = gr.Video( label="🎥 Generated Video with Audio", autoplay=True, interactive=False, visible=False ) # Event handlers audio_mode.change( fn=update_audio_visibility, inputs=[audio_mode], outputs=[audio_settings, video_with_audio_output] ) input_image_component.upload( fn=handle_image_upload_for_dims_wan, inputs=[input_image_component, height_input, width_input], outputs=[height_input, width_input] ) input_image_component.clear( fn=handle_image_upload_for_dims_wan, inputs=[input_image_component, height_input, width_input], outputs=[height_input, width_input] ) ui_inputs = [ input_image_component, prompt_input, height_input, width_input, negative_prompt_input, duration_seconds_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox, audio_mode, audio_prompt, audio_negative_prompt, audio_seed, audio_steps, audio_cfg_strength ] generate_button.click( fn=generate_video, inputs=ui_inputs, outputs=[video_output, video_with_audio_output, seed_input] ) with gr.Column(): gr.Examples( examples=[ ["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512, default_negative_prompt, 2, 1.0, 4, 42, False, "Video Only", "", default_audio_negative_prompt, -1, 25, 4.5], ["forg.jpg", "the frog jumps around", 448, 832, default_negative_prompt, 2, 1.0, 4, 42, False, "Enable Audio", "frog croaking, water splashing", default_audio_negative_prompt, -1, 25, 4.5], ], inputs=ui_inputs, outputs=[video_output, video_with_audio_output, seed_input], fn=generate_video, cache_examples="lazy", label="🌟 Example Gallery" ) if __name__ == "__main__": demo.queue().launch()