seawolf2357's picture
Update app.py
093d0ab verified
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 320
DEFAULT_W_SLIDER_VALUE = 560
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 120
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
# CSS ์Šคํƒ€์ผ ์ •์˜
custom_css = """
/* ์ „์ฒด ๋ฐฐ๊ฒฝ ๊ทธ๋ผ๋””์–ธํŠธ */
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #fa709a 100%) !important;
background-size: 400% 400% !important;
animation: gradientShift 15s ease infinite !important;
}
@keyframes gradientShift {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
/* ๋ฉ”์ธ ์ปจํ…Œ์ด๋„ˆ ์Šคํƒ€์ผ */
.main-container {
backdrop-filter: blur(10px);
background: rgba(255, 255, 255, 0.1) !important;
border-radius: 20px !important;
padding: 30px !important;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37) !important;
border: 1px solid rgba(255, 255, 255, 0.18) !important;
}
/* ํ—ค๋” ์Šคํƒ€์ผ */
h1 {
background: linear-gradient(45deg, #ffffff, #f0f0f0) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
font-weight: 800 !important;
font-size: 2.5rem !important;
text-align: center !important;
margin-bottom: 2rem !important;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1) !important;
}
/* ์ปดํฌ๋„ŒํŠธ ์ปจํ…Œ์ด๋„ˆ ์Šคํƒ€์ผ */
.input-container, .output-container {
background: rgba(255, 255, 255, 0.08) !important;
border-radius: 15px !important;
padding: 20px !important;
margin: 10px 0 !important;
backdrop-filter: blur(5px) !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
}
/* ์ž…๋ ฅ ํ•„๋“œ ์Šคํƒ€์ผ */
input, textarea, .gr-box {
background: rgba(255, 255, 255, 0.9) !important;
border: 1px solid rgba(255, 255, 255, 0.3) !important;
border-radius: 10px !important;
color: #333 !important;
transition: all 0.3s ease !important;
}
input:focus, textarea:focus {
background: rgba(255, 255, 255, 1) !important;
border-color: #667eea !important;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}
/* ๋ฒ„ํŠผ ์Šคํƒ€์ผ */
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
font-weight: 600 !important;
font-size: 1.1rem !important;
padding: 12px 30px !important;
border-radius: 50px !important;
border: none !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
}
.generate-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important;
}
/* ์Šฌ๋ผ์ด๋” ์Šคํƒ€์ผ */
input[type="range"] {
background: transparent !important;
}
input[type="range"]::-webkit-slider-track {
background: rgba(255, 255, 255, 0.3) !important;
border-radius: 5px !important;
height: 6px !important;
}
input[type="range"]::-webkit-slider-thumb {
background: linear-gradient(135deg, #667eea, #764ba2) !important;
border: 2px solid white !important;
border-radius: 50% !important;
cursor: pointer !important;
width: 18px !important;
height: 18px !important;
-webkit-appearance: none !important;
}
/* Accordion ์Šคํƒ€์ผ */
.gr-accordion {
background: rgba(255, 255, 255, 0.05) !important;
border-radius: 10px !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
margin: 15px 0 !important;
}
/* ๋ผ๋ฒจ ์Šคํƒ€์ผ */
label {
color: #ffffff !important;
font-weight: 500 !important;
font-size: 0.95rem !important;
margin-bottom: 5px !important;
}
/* ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ ์˜์—ญ */
.image-upload {
border: 2px dashed rgba(255, 255, 255, 0.3) !important;
border-radius: 15px !important;
background: rgba(255, 255, 255, 0.05) !important;
transition: all 0.3s ease !important;
}
.image-upload:hover {
border-color: rgba(255, 255, 255, 0.5) !important;
background: rgba(255, 255, 255, 0.1) !important;
}
/* ๋น„๋””์˜ค ์ถœ๋ ฅ ์˜์—ญ */
video {
border-radius: 15px !important;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important;
}
/* Examples ์„น์…˜ ์Šคํƒ€์ผ */
.gr-examples {
background: rgba(255, 255, 255, 0.05) !important;
border-radius: 15px !important;
padding: 20px !important;
margin-top: 20px !important;
}
/* Checkbox ์Šคํƒ€์ผ */
input[type="checkbox"] {
accent-color: #667eea !important;
}
/* ๋ฐ˜์‘ํ˜• ์• ๋‹ˆ๋ฉ”์ด์…˜ */
@media (max-width: 768px) {
h1 { font-size: 2rem !important; }
.main-container { padding: 20px !important; }
}
"""
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def get_duration(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress):
if steps > 4 and duration_seconds > 2:
return 90
elif steps > 4 or duration_seconds > 2:
return 75
else:
return 60
@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width,
negative_prompt=default_negative_prompt, duration_seconds = 2,
guidance_scale = 1, steps = 4,
seed = 42, randomize_seed = False,
progress=gr.Progress(track_tqdm=True)):
if input_image is None:
raise gr.Error("Please upload an input image.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h))
with torch.inference_mode():
output_frames_list = pipe(
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes=["main-container"]):
gr.Markdown("# โœจ Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")
# Add badges side by side
gr.HTML("""
<div class="badge-container">
<a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank">
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=FAST%20%26%20Furios&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/WAN-VIDEO-AUDIO" target="_blank">
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=VIDEO%20%26%20AUDIO&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
</div>
""")
with gr.Row():
with gr.Column(elem_classes=["input-container"]):
input_image_component = gr.Image(
type="pil",
label="๐Ÿ–ผ๏ธ Input Image (auto-resized to target H/W)",
elem_classes=["image-upload"]
)
prompt_input = gr.Textbox(
label="โœ๏ธ Prompt",
value=default_prompt_i2v,
lines=2
)
duration_seconds_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
step=0.1,
value=2,
label="โฑ๏ธ Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
with gr.Accordion("โš™๏ธ Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(
label="โŒ Negative Prompt",
value=default_negative_prompt,
lines=3
)
seed_input = gr.Slider(
label="๐ŸŽฒ Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
interactive=True
)
randomize_seed_checkbox = gr.Checkbox(
label="๐Ÿ”€ Randomize seed",
value=True,
interactive=True
)
with gr.Row():
height_input = gr.Slider(
minimum=SLIDER_MIN_H,
maximum=SLIDER_MAX_H,
step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"๐Ÿ“ Output Height (multiple of {MOD_VALUE})"
)
width_input = gr.Slider(
minimum=SLIDER_MIN_W,
maximum=SLIDER_MAX_W,
step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"๐Ÿ“ Output Width (multiple of {MOD_VALUE})"
)
steps_slider = gr.Slider(
minimum=1,
maximum=30,
step=1,
value=4,
label="๐Ÿš€ Inference Steps"
)
guidance_scale_input = gr.Slider(
minimum=0.0,
maximum=20.0,
step=0.5,
value=1.0,
label="๐ŸŽฏ Guidance Scale",
visible=False
)
generate_button = gr.Button(
"๐ŸŽฌ Generate Video",
variant="primary",
elem_classes=["generate-btn"]
)
with gr.Column(elem_classes=["output-container"]):
video_output = gr.Video(
label="๐ŸŽฅ Generated Video",
autoplay=True,
interactive=False
)
input_image_component.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
input_image_component.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
ui_inputs = [
input_image_component, prompt_input, height_input, width_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
with gr.Column():
gr.Examples(
examples=[
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
["forg.jpg", "the frog jumps around", 448, 832],
],
inputs=[input_image_component, prompt_input, height_input, width_input],
outputs=[video_output, seed_input],
fn=generate_video,
cache_examples="lazy",
label="๐ŸŒŸ Example Gallery"
)
if __name__ == "__main__":
demo.queue().launch()