Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
from transformers import CLIPVisionModel | |
import gradio as gr | |
import tempfile | |
import spaces | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
import random | |
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" | |
LORA_REPO_ID = "Kijai/WanVideo_comfy" | |
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" | |
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32) | |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) | |
pipe = WanImageToVideoPipeline.from_pretrained( | |
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) | |
pipe.to("cuda") | |
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) | |
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") | |
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95]) | |
pipe.fuse_lora() | |
MOD_VALUE = 32 | |
DEFAULT_H_SLIDER_VALUE = 320 | |
DEFAULT_W_SLIDER_VALUE = 560 | |
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 | |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896 | |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 24 | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 120 | |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" | |
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" | |
# CSS ์คํ์ผ ์ ์ | |
custom_css = """ | |
/* ์ ์ฒด ๋ฐฐ๊ฒฝ ๊ทธ๋ผ๋์ธํธ */ | |
.gradio-container { | |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important; | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #fa709a 100%) !important; | |
background-size: 400% 400% !important; | |
animation: gradientShift 15s ease infinite !important; | |
} | |
@keyframes gradientShift { | |
0% { background-position: 0% 50%; } | |
50% { background-position: 100% 50%; } | |
100% { background-position: 0% 50%; } | |
} | |
/* ๋ฉ์ธ ์ปจํ ์ด๋ ์คํ์ผ */ | |
.main-container { | |
backdrop-filter: blur(10px); | |
background: rgba(255, 255, 255, 0.1) !important; | |
border-radius: 20px !important; | |
padding: 30px !important; | |
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37) !important; | |
border: 1px solid rgba(255, 255, 255, 0.18) !important; | |
} | |
/* ํค๋ ์คํ์ผ */ | |
h1 { | |
background: linear-gradient(45deg, #ffffff, #f0f0f0) !important; | |
-webkit-background-clip: text !important; | |
-webkit-text-fill-color: transparent !important; | |
background-clip: text !important; | |
font-weight: 800 !important; | |
font-size: 2.5rem !important; | |
text-align: center !important; | |
margin-bottom: 2rem !important; | |
text-shadow: 2px 2px 4px rgba(0,0,0,0.1) !important; | |
} | |
/* ์ปดํฌ๋ํธ ์ปจํ ์ด๋ ์คํ์ผ */ | |
.input-container, .output-container { | |
background: rgba(255, 255, 255, 0.08) !important; | |
border-radius: 15px !important; | |
padding: 20px !important; | |
margin: 10px 0 !important; | |
backdrop-filter: blur(5px) !important; | |
border: 1px solid rgba(255, 255, 255, 0.1) !important; | |
} | |
/* ์ ๋ ฅ ํ๋ ์คํ์ผ */ | |
input, textarea, .gr-box { | |
background: rgba(255, 255, 255, 0.9) !important; | |
border: 1px solid rgba(255, 255, 255, 0.3) !important; | |
border-radius: 10px !important; | |
color: #333 !important; | |
transition: all 0.3s ease !important; | |
} | |
input:focus, textarea:focus { | |
background: rgba(255, 255, 255, 1) !important; | |
border-color: #667eea !important; | |
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important; | |
} | |
/* ๋ฒํผ ์คํ์ผ */ | |
.generate-btn { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
color: white !important; | |
font-weight: 600 !important; | |
font-size: 1.1rem !important; | |
padding: 12px 30px !important; | |
border-radius: 50px !important; | |
border: none !important; | |
cursor: pointer !important; | |
transition: all 0.3s ease !important; | |
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important; | |
} | |
.generate-btn:hover { | |
transform: translateY(-2px) !important; | |
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important; | |
} | |
/* ์ฌ๋ผ์ด๋ ์คํ์ผ */ | |
input[type="range"] { | |
background: transparent !important; | |
} | |
input[type="range"]::-webkit-slider-track { | |
background: rgba(255, 255, 255, 0.3) !important; | |
border-radius: 5px !important; | |
height: 6px !important; | |
} | |
input[type="range"]::-webkit-slider-thumb { | |
background: linear-gradient(135deg, #667eea, #764ba2) !important; | |
border: 2px solid white !important; | |
border-radius: 50% !important; | |
cursor: pointer !important; | |
width: 18px !important; | |
height: 18px !important; | |
-webkit-appearance: none !important; | |
} | |
/* Accordion ์คํ์ผ */ | |
.gr-accordion { | |
background: rgba(255, 255, 255, 0.05) !important; | |
border-radius: 10px !important; | |
border: 1px solid rgba(255, 255, 255, 0.1) !important; | |
margin: 15px 0 !important; | |
} | |
/* ๋ผ๋ฒจ ์คํ์ผ */ | |
label { | |
color: #ffffff !important; | |
font-weight: 500 !important; | |
font-size: 0.95rem !important; | |
margin-bottom: 5px !important; | |
} | |
/* ์ด๋ฏธ์ง ์ ๋ก๋ ์์ญ */ | |
.image-upload { | |
border: 2px dashed rgba(255, 255, 255, 0.3) !important; | |
border-radius: 15px !important; | |
background: rgba(255, 255, 255, 0.05) !important; | |
transition: all 0.3s ease !important; | |
} | |
.image-upload:hover { | |
border-color: rgba(255, 255, 255, 0.5) !important; | |
background: rgba(255, 255, 255, 0.1) !important; | |
} | |
/* ๋น๋์ค ์ถ๋ ฅ ์์ญ */ | |
video { | |
border-radius: 15px !important; | |
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important; | |
} | |
/* Examples ์น์ ์คํ์ผ */ | |
.gr-examples { | |
background: rgba(255, 255, 255, 0.05) !important; | |
border-radius: 15px !important; | |
padding: 20px !important; | |
margin-top: 20px !important; | |
} | |
/* Checkbox ์คํ์ผ */ | |
input[type="checkbox"] { | |
accent-color: #667eea !important; | |
} | |
/* ๋ฐ์ํ ์ ๋๋ฉ์ด์ */ | |
@media (max-width: 768px) { | |
h1 { font-size: 2rem !important; } | |
.main-container { padding: 20px !important; } | |
} | |
""" | |
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, | |
min_slider_h, max_slider_h, | |
min_slider_w, max_slider_w, | |
default_h, default_w): | |
orig_w, orig_h = pil_image.size | |
if orig_w <= 0 or orig_h <= 0: | |
return default_h, default_w | |
aspect_ratio = orig_h / orig_w | |
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) | |
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) | |
calc_h = max(mod_val, (calc_h // mod_val) * mod_val) | |
calc_w = max(mod_val, (calc_w // mod_val) * mod_val) | |
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) | |
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) | |
return new_h, new_w | |
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val): | |
if uploaded_pil_image is None: | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
try: | |
new_h, new_w = _calculate_new_dimensions_wan( | |
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, | |
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, | |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE | |
) | |
return gr.update(value=new_h), gr.update(value=new_w) | |
except Exception as e: | |
gr.Warning("Error attempting to calculate new dimensions") | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
def get_duration(input_image, prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, | |
seed, randomize_seed, | |
progress): | |
if steps > 4 and duration_seconds > 2: | |
return 90 | |
elif steps > 4 or duration_seconds > 2: | |
return 75 | |
else: | |
return 60 | |
def generate_video(input_image, prompt, height, width, | |
negative_prompt=default_negative_prompt, duration_seconds = 2, | |
guidance_scale = 1, steps = 4, | |
seed = 42, randomize_seed = False, | |
progress=gr.Progress(track_tqdm=True)): | |
if input_image is None: | |
raise gr.Error("Please upload an input image.") | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
resized_image = input_image.resize((target_w, target_h)) | |
with torch.inference_mode(): | |
output_frames_list = pipe( | |
image=resized_image, prompt=prompt, negative_prompt=negative_prompt, | |
height=target_h, width=target_w, num_frames=num_frames, | |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
return video_path, current_seed | |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: | |
with gr.Column(elem_classes=["main-container"]): | |
gr.Markdown("# โจ Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA") | |
# Add badges side by side | |
gr.HTML(""" | |
<div class="badge-container"> | |
<a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=FAST%20%26%20Furios&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge"> | |
</a> | |
<a href="https://huggingface.co/spaces/Heartsync/WAN-VIDEO-AUDIO" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=VIDEO%20%26%20AUDIO&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge"> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(elem_classes=["input-container"]): | |
input_image_component = gr.Image( | |
type="pil", | |
label="๐ผ๏ธ Input Image (auto-resized to target H/W)", | |
elem_classes=["image-upload"] | |
) | |
prompt_input = gr.Textbox( | |
label="โ๏ธ Prompt", | |
value=default_prompt_i2v, | |
lines=2 | |
) | |
duration_seconds_input = gr.Slider( | |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), | |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), | |
step=0.1, | |
value=2, | |
label="โฑ๏ธ Duration (seconds)", | |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." | |
) | |
with gr.Accordion("โ๏ธ Advanced Settings", open=False): | |
negative_prompt_input = gr.Textbox( | |
label="โ Negative Prompt", | |
value=default_negative_prompt, | |
lines=3 | |
) | |
seed_input = gr.Slider( | |
label="๐ฒ Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
interactive=True | |
) | |
randomize_seed_checkbox = gr.Checkbox( | |
label="๐ Randomize seed", | |
value=True, | |
interactive=True | |
) | |
with gr.Row(): | |
height_input = gr.Slider( | |
minimum=SLIDER_MIN_H, | |
maximum=SLIDER_MAX_H, | |
step=MOD_VALUE, | |
value=DEFAULT_H_SLIDER_VALUE, | |
label=f"๐ Output Height (multiple of {MOD_VALUE})" | |
) | |
width_input = gr.Slider( | |
minimum=SLIDER_MIN_W, | |
maximum=SLIDER_MAX_W, | |
step=MOD_VALUE, | |
value=DEFAULT_W_SLIDER_VALUE, | |
label=f"๐ Output Width (multiple of {MOD_VALUE})" | |
) | |
steps_slider = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=4, | |
label="๐ Inference Steps" | |
) | |
guidance_scale_input = gr.Slider( | |
minimum=0.0, | |
maximum=20.0, | |
step=0.5, | |
value=1.0, | |
label="๐ฏ Guidance Scale", | |
visible=False | |
) | |
generate_button = gr.Button( | |
"๐ฌ Generate Video", | |
variant="primary", | |
elem_classes=["generate-btn"] | |
) | |
with gr.Column(elem_classes=["output-container"]): | |
video_output = gr.Video( | |
label="๐ฅ Generated Video", | |
autoplay=True, | |
interactive=False | |
) | |
input_image_component.upload( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[input_image_component, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
input_image_component.clear( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[input_image_component, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
ui_inputs = [ | |
input_image_component, prompt_input, height_input, width_input, | |
negative_prompt_input, duration_seconds_input, | |
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox | |
] | |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) | |
with gr.Column(): | |
gr.Examples( | |
examples=[ | |
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512], | |
["forg.jpg", "the frog jumps around", 448, 832], | |
], | |
inputs=[input_image_component, prompt_input, height_input, width_input], | |
outputs=[video_output, seed_input], | |
fn=generate_video, | |
cache_examples="lazy", | |
label="๐ Example Gallery" | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |