Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						53a8589
	
1
								Parent(s):
							
							ffaaaf6
								
Update pages/Text-to-Text.py
Browse files- pages/Text-to-Text.py +3 -3
    	
        pages/Text-to-Text.py
    CHANGED
    
    | @@ -51,7 +51,7 @@ else: | |
| 51 |  | 
| 52 |  | 
| 53 | 
             
            length = form.number_input("Select how long you want the generated text to be", value = 100)
         | 
| 54 | 
            -
            number_of_tokens_to_sample = form.number_input("Select how many tokens we want to search through when we do the filtering", value =  | 
| 55 | 
             
            form.caption("Settings this to higher numbers will improve the experience but will cause generating to slow. Low numbers may cause lots of blank or failed generations")
         | 
| 56 | 
             
            temperature = form.number_input("How spicy/interesting do we want our models output to be", value = 0.10, min_value = 0.0)
         | 
| 57 | 
             
            form.caption("Setting this higher decreases the likelihood of high probability words and increases the likelihood of low probability (and presumably more interesting) words")
         | 
| @@ -90,10 +90,10 @@ def get_next_word_without_e(): | |
| 90 | 
             
                if temperature != 1.0:
         | 
| 91 | 
             
                    next_token_candidates_logits = next_token_candidates_logits / temperature
         | 
| 92 | 
             
                # filter
         | 
| 93 | 
            -
                filtered_next_token_candidates_logits = top_k_top_p_filtering(next_token_candidates_logits, top_k=number_of_tokens_to_sample, top_p=number_of_tokens_to_sample)
         | 
| 94 | 
             
                # sample and get a probability distribution
         | 
| 95 | 
             
                probs = F.softmax(filtered_next_token_candidates_logits, dim=-1)
         | 
| 96 | 
            -
                next_token_candidates = torch.multinomial(probs, num_samples=number_of_tokens_to_sample) ## 10000 random samples
         | 
| 97 | 
             
                word_list = []
         | 
| 98 | 
             
                for candidate_string in next_token_candidates:
         | 
| 99 | 
             
                    for candidate in candidate_string:
         | 
|  | |
| 51 |  | 
| 52 |  | 
| 53 | 
             
            length = form.number_input("Select how long you want the generated text to be", value = 100)
         | 
| 54 | 
            +
            number_of_tokens_to_sample = form.number_input("Select how many tokens we want to search through when we do the filtering", value = 25000)
         | 
| 55 | 
             
            form.caption("Settings this to higher numbers will improve the experience but will cause generating to slow. Low numbers may cause lots of blank or failed generations")
         | 
| 56 | 
             
            temperature = form.number_input("How spicy/interesting do we want our models output to be", value = 0.10, min_value = 0.0)
         | 
| 57 | 
             
            form.caption("Setting this higher decreases the likelihood of high probability words and increases the likelihood of low probability (and presumably more interesting) words")
         | 
|  | |
| 90 | 
             
                if temperature != 1.0:
         | 
| 91 | 
             
                    next_token_candidates_logits = next_token_candidates_logits / temperature
         | 
| 92 | 
             
                # filter
         | 
| 93 | 
            +
                filtered_next_token_candidates_logits = top_k_top_p_filtering(next_token_candidates_logits, top_k=int(number_of_tokens_to_sample), top_p=int(number_of_tokens_to_sample))
         | 
| 94 | 
             
                # sample and get a probability distribution
         | 
| 95 | 
             
                probs = F.softmax(filtered_next_token_candidates_logits, dim=-1)
         | 
| 96 | 
            +
                next_token_candidates = torch.multinomial(probs, num_samples=int(number_of_tokens_to_sample)) ## 10000 random samples
         | 
| 97 | 
             
                word_list = []
         | 
| 98 | 
             
                for candidate_string in next_token_candidates:
         | 
| 99 | 
             
                    for candidate in candidate_string:
         | 
