from fastapi import FastAPI from pydantic import BaseModel from transformers import AutoModelForCausalLM, AutoTokenizer import torch app = FastAPI() # نموذج مفتوح المصدر MODEL_NAME = "TheBloke/vicuna-7B-1.1-HF" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", torch_dtype=torch.float16) # تخزين تاريخ المحادثة chat_histories = {} class ChatRequest(BaseModel): user_id: str message: str @app.post("/chat") def chat_endpoint(request: ChatRequest): user_id = request.user_id message = request.message if user_id not in chat_histories: chat_histories[user_id] = [] conversation = "NOVA AI: أنا كوميدي ومغربي. نفهم أي حاجة.\n" for q, a in chat_histories[user_id]: conversation += f"User: {q}\nNOVA AI: {a}\n" conversation += f"User: {message}\nNOVA AI:" inputs = tokenizer(conversation, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("NOVA AI:")[-1].strip() chat_histories[user_id].append((message, response)) if len(chat_histories[user_id]) > 10: chat_histories[user_id] = chat_histories[user_id][-10:] return {"response": response}