Spaces:
Running
Running
Update hf_model.py
Browse files- hf_model.py +14 -2
hf_model.py
CHANGED
@@ -1,12 +1,19 @@
|
|
1 |
from transformers import pipeline
|
2 |
|
3 |
# Load the Hugging Face pipeline
|
4 |
-
def load_model(task="summarization"):
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
return model
|
7 |
|
8 |
# Summarization function
|
9 |
def summarize_text(model, text):
|
|
|
|
|
|
|
10 |
if not text.strip():
|
11 |
return "Please provide input text."
|
12 |
result = model(text, max_length=150, min_length=40, do_sample=False)
|
@@ -14,5 +21,10 @@ def summarize_text(model, text):
|
|
14 |
|
15 |
# Question Answering function
|
16 |
def answer_question(model, question, context):
|
|
|
|
|
|
|
|
|
|
|
17 |
result = model(question=question, context=context)
|
18 |
return result['answer']
|
|
|
1 |
from transformers import pipeline
|
2 |
|
3 |
# Load the Hugging Face pipeline
|
4 |
+
def load_model(task="summarization", framework="pt"):
|
5 |
+
"""
|
6 |
+
Load the specified task model using Hugging Face's pipeline.
|
7 |
+
Default is PyTorch ('pt') as the framework.
|
8 |
+
"""
|
9 |
+
model = pipeline(task=task, model="facebook/bart-large-cnn", framework=framework)
|
10 |
return model
|
11 |
|
12 |
# Summarization function
|
13 |
def summarize_text(model, text):
|
14 |
+
"""
|
15 |
+
Summarize the provided legal text.
|
16 |
+
"""
|
17 |
if not text.strip():
|
18 |
return "Please provide input text."
|
19 |
result = model(text, max_length=150, min_length=40, do_sample=False)
|
|
|
21 |
|
22 |
# Question Answering function
|
23 |
def answer_question(model, question, context):
|
24 |
+
"""
|
25 |
+
Answer a question based on the provided legal context.
|
26 |
+
"""
|
27 |
+
if not context.strip() or not question.strip():
|
28 |
+
return "Please provide both a context and a question."
|
29 |
result = model(question=question, context=context)
|
30 |
return result['answer']
|