import streamlit as st from hf_model import load_model, summarize_text, answer_question # Title and Sidebar st.title("Legal NLP Application") st.sidebar.title("Options") # Select the task task = st.sidebar.radio("Select Task", ["Summarization", "Question Answering"]) # Task 1: Summarization if task == "Summarization": st.header("Summarize Legal Text") user_input = st.text_area("Enter Legal Text", height=200, placeholder="Paste a legal text or case summary here...") if st.button("Summarize"): st.write("Loading model...") model = load_model(task="summarization") # Load summarization model summary = summarize_text(model, user_input) st.write("### Summary") st.write(summary) # Task 2: Question Answering elif task == "Question Answering": st.header("Legal Question Answering") context = st.text_area("Enter Context", height=200, placeholder="Paste a legal document or case description here...") question = st.text_input("Ask a Legal Question", placeholder="Type your legal question here...") if st.button("Get Answer"): st.write("Loading model...") model = load_model(task="question-answering") # Load QA model answer = answer_question(model, question, context) st.write("### Answer") st.write(answer)