from transformers import pipeline # Load the Hugging Face pipeline def load_model(task="summarization", framework="pt"): """ Load the specified task model using Hugging Face's pipeline. Default is PyTorch ('pt') as the framework. """ model = pipeline(task=task, model="facebook/bart-large-cnn", framework=framework) return model # Summarization function def summarize_text(model, text): """ Summarize the provided legal text. """ if not text.strip(): return "Please provide input text." result = model(text, max_length=150, min_length=40, do_sample=False) return result[0]['summary_text'] # Question Answering function def answer_question(model, question, context): """ Answer a question based on the provided legal context. """ if not context.strip() or not question.strip(): return "Please provide both a context and a question." result = model(question=question, context=context) return result['answer']