Spaces:
Running
on
T4
Running
on
T4
Commit
·
9bf54b1
1
Parent(s):
72f81a3
feat: DAT and comparison
Browse files- app.py +22 -6
- architecture/dat.py +889 -0
- test_code/test_utils.py +44 -0
app.py
CHANGED
|
@@ -1,6 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os, sys
|
| 2 |
import cv2
|
| 3 |
import time
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
import numpy as np
|
|
@@ -11,7 +15,7 @@ from torchvision.utils import save_image
|
|
| 11 |
root_path = os.path.abspath('.')
|
| 12 |
sys.path.append(root_path)
|
| 13 |
from test_code.inference import super_resolve_img
|
| 14 |
-
from test_code.test_utils import load_grl, load_rrdb
|
| 15 |
|
| 16 |
|
| 17 |
def auto_download_if_needed(weight_path):
|
|
@@ -32,7 +36,10 @@ def auto_download_if_needed(weight_path):
|
|
| 32 |
if weight_path == "pretrained/2x_APISR_RRDB_GAN_generator.pth":
|
| 33 |
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/2x_APISR_RRDB_GAN_generator.pth")
|
| 34 |
os.system("mv 2x_APISR_RRDB_GAN_generator.pth pretrained")
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
|
|
@@ -57,12 +64,20 @@ def inference(img_path, model_name):
|
|
| 57 |
auto_download_if_needed(weight_path)
|
| 58 |
generator = load_rrdb(weight_path, scale=2) # Directly use default way now
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
else:
|
| 61 |
raise gr.Error("We don't support such Model")
|
| 62 |
|
| 63 |
generator = generator.to(dtype=weight_dtype)
|
| 64 |
|
| 65 |
|
|
|
|
|
|
|
|
|
|
| 66 |
# In default, we will automatically use crop to match 4x size
|
| 67 |
super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, downsample_threshold=720, crop_for_4x=True)
|
| 68 |
store_name = str(time.time()) + ".png"
|
|
@@ -90,9 +105,9 @@ if __name__ == '__main__':
|
|
| 90 |
APISR aims at restoring and enhancing low-quality low-resolution **anime** images and video sources with various degradations from real-world scenarios.
|
| 91 |
|
| 92 |
### Note: Due to memory restriction, all images whose short side is over 720 pixel will be downsampled to 720 pixel with the same aspect ratio. E.g., 1920x1080 -> 1280x720
|
| 93 |
-
### Note: Please check [Model Zoo](https://github.com/Kiteretsu77/APISR/blob/main/docs/model_zoo.md) for the description of each weight.
|
| 94 |
|
| 95 |
-
If APISR is helpful, please help star the [GitHub Repo](https://github.com/Kiteretsu77/APISR). Thanks!
|
| 96 |
"""
|
| 97 |
|
| 98 |
block = gr.Blocks().queue(max_size=10)
|
|
@@ -106,7 +121,8 @@ if __name__ == '__main__':
|
|
| 106 |
[
|
| 107 |
"2xRRDB",
|
| 108 |
"4xRRDB",
|
| 109 |
-
"4xGRL"
|
|
|
|
| 110 |
],
|
| 111 |
type="value",
|
| 112 |
value="4xGRL",
|
|
@@ -134,4 +150,4 @@ if __name__ == '__main__':
|
|
| 134 |
|
| 135 |
run_btn.click(inference, inputs=[input_image, model_name], outputs=[output_image])
|
| 136 |
|
| 137 |
-
block.launch()
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
Gradio demo (almost the same code as the one used in Huggingface space)
|
| 3 |
+
'''
|
| 4 |
import os, sys
|
| 5 |
import cv2
|
| 6 |
import time
|
| 7 |
+
import datetime, pytz
|
| 8 |
import gradio as gr
|
| 9 |
import torch
|
| 10 |
import numpy as np
|
|
|
|
| 15 |
root_path = os.path.abspath('.')
|
| 16 |
sys.path.append(root_path)
|
| 17 |
from test_code.inference import super_resolve_img
|
| 18 |
+
from test_code.test_utils import load_grl, load_rrdb, load_dat
|
| 19 |
|
| 20 |
|
| 21 |
def auto_download_if_needed(weight_path):
|
|
|
|
| 36 |
if weight_path == "pretrained/2x_APISR_RRDB_GAN_generator.pth":
|
| 37 |
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/2x_APISR_RRDB_GAN_generator.pth")
|
| 38 |
os.system("mv 2x_APISR_RRDB_GAN_generator.pth pretrained")
|
| 39 |
+
|
| 40 |
+
if weight_path == "pretrained/4x_APISR_DAT_GAN_generator.pth":
|
| 41 |
+
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.3.0/4x_APISR_DAT_GAN_generator.pth")
|
| 42 |
+
os.system("mv 4x_APISR_DAT_GAN_generator.pth pretrained")
|
| 43 |
|
| 44 |
|
| 45 |
|
|
|
|
| 64 |
auto_download_if_needed(weight_path)
|
| 65 |
generator = load_rrdb(weight_path, scale=2) # Directly use default way now
|
| 66 |
|
| 67 |
+
elif model_name == "4xDAT":
|
| 68 |
+
weight_path = "pretrained/4x_APISR_DAT_GAN_generator.pth"
|
| 69 |
+
auto_download_if_needed(weight_path)
|
| 70 |
+
generator = load_dat(weight_path, scale=4) # Directly use default way now
|
| 71 |
+
|
| 72 |
else:
|
| 73 |
raise gr.Error("We don't support such Model")
|
| 74 |
|
| 75 |
generator = generator.to(dtype=weight_dtype)
|
| 76 |
|
| 77 |
|
| 78 |
+
print("We are processing ", img_path)
|
| 79 |
+
print("The time now is ", datetime.datetime.now(pytz.timezone('US/Eastern')))
|
| 80 |
+
|
| 81 |
# In default, we will automatically use crop to match 4x size
|
| 82 |
super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, downsample_threshold=720, crop_for_4x=True)
|
| 83 |
store_name = str(time.time()) + ".png"
|
|
|
|
| 105 |
APISR aims at restoring and enhancing low-quality low-resolution **anime** images and video sources with various degradations from real-world scenarios.
|
| 106 |
|
| 107 |
### Note: Due to memory restriction, all images whose short side is over 720 pixel will be downsampled to 720 pixel with the same aspect ratio. E.g., 1920x1080 -> 1280x720
|
| 108 |
+
### Note: Please check [Model Zoo](https://github.com/Kiteretsu77/APISR/blob/main/docs/model_zoo.md) for the description of each weight and [Here](https://imgsli.com/MjU0MjI0) for model comparisons.
|
| 109 |
|
| 110 |
+
### If APISR is helpful, please help star the [GitHub Repo](https://github.com/Kiteretsu77/APISR). Thanks! ###
|
| 111 |
"""
|
| 112 |
|
| 113 |
block = gr.Blocks().queue(max_size=10)
|
|
|
|
| 121 |
[
|
| 122 |
"2xRRDB",
|
| 123 |
"4xRRDB",
|
| 124 |
+
"4xGRL",
|
| 125 |
+
"4xDAT",
|
| 126 |
],
|
| 127 |
type="value",
|
| 128 |
value="4xGRL",
|
|
|
|
| 150 |
|
| 151 |
run_btn.click(inference, inputs=[input_image, model_name], outputs=[output_image])
|
| 152 |
|
| 153 |
+
block.launch()
|
architecture/dat.py
ADDED
|
@@ -0,0 +1,889 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
DAT network from https://github.com/zhengchen1999/DAT (https://openaccess.thecvf.com/content/ICCV2023/papers/Chen_Dual_Aggregation_Transformer_for_Image_Super-Resolution_ICCV_2023_paper.pdf)
|
| 3 |
+
'''
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.utils.checkpoint as checkpoint
|
| 8 |
+
from torch import Tensor
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
|
| 11 |
+
from timm.models.layers import DropPath, trunc_normal_
|
| 12 |
+
from einops.layers.torch import Rearrange
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
|
| 15 |
+
import math
|
| 16 |
+
import numpy as np
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def img2windows(img, H_sp, W_sp):
|
| 21 |
+
"""
|
| 22 |
+
Input: Image (B, C, H, W)
|
| 23 |
+
Output: Window Partition (B', N, C)
|
| 24 |
+
"""
|
| 25 |
+
B, C, H, W = img.shape
|
| 26 |
+
img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
|
| 27 |
+
img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp* W_sp, C)
|
| 28 |
+
return img_perm
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def windows2img(img_splits_hw, H_sp, W_sp, H, W):
|
| 32 |
+
"""
|
| 33 |
+
Input: Window Partition (B', N, C)
|
| 34 |
+
Output: Image (B, H, W, C)
|
| 35 |
+
"""
|
| 36 |
+
B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))
|
| 37 |
+
|
| 38 |
+
img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
|
| 39 |
+
img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 40 |
+
return img
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class SpatialGate(nn.Module):
|
| 44 |
+
""" Spatial-Gate.
|
| 45 |
+
Args:
|
| 46 |
+
dim (int): Half of input channels.
|
| 47 |
+
"""
|
| 48 |
+
def __init__(self, dim):
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.norm = nn.LayerNorm(dim)
|
| 51 |
+
self.conv = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim) # DW Conv
|
| 52 |
+
|
| 53 |
+
def forward(self, x, H, W):
|
| 54 |
+
# Split
|
| 55 |
+
x1, x2 = x.chunk(2, dim = -1)
|
| 56 |
+
B, N, C = x.shape
|
| 57 |
+
x2 = self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C//2, H, W)).flatten(2).transpose(-1, -2).contiguous()
|
| 58 |
+
|
| 59 |
+
return x1 * x2
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class SGFN(nn.Module):
|
| 63 |
+
""" Spatial-Gate Feed-Forward Network.
|
| 64 |
+
Args:
|
| 65 |
+
in_features (int): Number of input channels.
|
| 66 |
+
hidden_features (int | None): Number of hidden channels. Default: None
|
| 67 |
+
out_features (int | None): Number of output channels. Default: None
|
| 68 |
+
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
| 69 |
+
drop (float): Dropout rate. Default: 0.0
|
| 70 |
+
"""
|
| 71 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 72 |
+
super().__init__()
|
| 73 |
+
out_features = out_features or in_features
|
| 74 |
+
hidden_features = hidden_features or in_features
|
| 75 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 76 |
+
self.act = act_layer()
|
| 77 |
+
self.sg = SpatialGate(hidden_features//2)
|
| 78 |
+
self.fc2 = nn.Linear(hidden_features//2, out_features)
|
| 79 |
+
self.drop = nn.Dropout(drop)
|
| 80 |
+
|
| 81 |
+
def forward(self, x, H, W):
|
| 82 |
+
"""
|
| 83 |
+
Input: x: (B, H*W, C), H, W
|
| 84 |
+
Output: x: (B, H*W, C)
|
| 85 |
+
"""
|
| 86 |
+
x = self.fc1(x)
|
| 87 |
+
x = self.act(x)
|
| 88 |
+
x = self.drop(x)
|
| 89 |
+
|
| 90 |
+
x = self.sg(x, H, W)
|
| 91 |
+
x = self.drop(x)
|
| 92 |
+
|
| 93 |
+
x = self.fc2(x)
|
| 94 |
+
x = self.drop(x)
|
| 95 |
+
return x
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class DynamicPosBias(nn.Module):
|
| 99 |
+
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
|
| 100 |
+
""" Dynamic Relative Position Bias.
|
| 101 |
+
Args:
|
| 102 |
+
dim (int): Number of input channels.
|
| 103 |
+
num_heads (int): Number of attention heads.
|
| 104 |
+
residual (bool): If True, use residual strage to connect conv.
|
| 105 |
+
"""
|
| 106 |
+
def __init__(self, dim, num_heads, residual):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self.residual = residual
|
| 109 |
+
self.num_heads = num_heads
|
| 110 |
+
self.pos_dim = dim // 4
|
| 111 |
+
self.pos_proj = nn.Linear(2, self.pos_dim)
|
| 112 |
+
self.pos1 = nn.Sequential(
|
| 113 |
+
nn.LayerNorm(self.pos_dim),
|
| 114 |
+
nn.ReLU(inplace=True),
|
| 115 |
+
nn.Linear(self.pos_dim, self.pos_dim),
|
| 116 |
+
)
|
| 117 |
+
self.pos2 = nn.Sequential(
|
| 118 |
+
nn.LayerNorm(self.pos_dim),
|
| 119 |
+
nn.ReLU(inplace=True),
|
| 120 |
+
nn.Linear(self.pos_dim, self.pos_dim)
|
| 121 |
+
)
|
| 122 |
+
self.pos3 = nn.Sequential(
|
| 123 |
+
nn.LayerNorm(self.pos_dim),
|
| 124 |
+
nn.ReLU(inplace=True),
|
| 125 |
+
nn.Linear(self.pos_dim, self.num_heads)
|
| 126 |
+
)
|
| 127 |
+
def forward(self, biases):
|
| 128 |
+
if self.residual:
|
| 129 |
+
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
|
| 130 |
+
pos = pos + self.pos1(pos)
|
| 131 |
+
pos = pos + self.pos2(pos)
|
| 132 |
+
pos = self.pos3(pos)
|
| 133 |
+
else:
|
| 134 |
+
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
|
| 135 |
+
return pos
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class Spatial_Attention(nn.Module):
|
| 139 |
+
""" Spatial Window Self-Attention.
|
| 140 |
+
It supports rectangle window (containing square window).
|
| 141 |
+
Args:
|
| 142 |
+
dim (int): Number of input channels.
|
| 143 |
+
idx (int): The indentix of window. (0/1)
|
| 144 |
+
split_size (tuple(int)): Height and Width of spatial window.
|
| 145 |
+
dim_out (int | None): The dimension of the attention output. Default: None
|
| 146 |
+
num_heads (int): Number of attention heads. Default: 6
|
| 147 |
+
attn_drop (float): Dropout ratio of attention weight. Default: 0.0
|
| 148 |
+
proj_drop (float): Dropout ratio of output. Default: 0.0
|
| 149 |
+
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set
|
| 150 |
+
position_bias (bool): The dynamic relative position bias. Default: True
|
| 151 |
+
"""
|
| 152 |
+
def __init__(self, dim, idx, split_size=[8,8], dim_out=None, num_heads=6, attn_drop=0., proj_drop=0., qk_scale=None, position_bias=True):
|
| 153 |
+
super().__init__()
|
| 154 |
+
self.dim = dim
|
| 155 |
+
self.dim_out = dim_out or dim
|
| 156 |
+
self.split_size = split_size
|
| 157 |
+
self.num_heads = num_heads
|
| 158 |
+
self.idx = idx
|
| 159 |
+
self.position_bias = position_bias
|
| 160 |
+
|
| 161 |
+
head_dim = dim // num_heads
|
| 162 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 163 |
+
|
| 164 |
+
if idx == 0:
|
| 165 |
+
H_sp, W_sp = self.split_size[0], self.split_size[1]
|
| 166 |
+
elif idx == 1:
|
| 167 |
+
W_sp, H_sp = self.split_size[0], self.split_size[1]
|
| 168 |
+
else:
|
| 169 |
+
print ("ERROR MODE", idx)
|
| 170 |
+
exit(0)
|
| 171 |
+
self.H_sp = H_sp
|
| 172 |
+
self.W_sp = W_sp
|
| 173 |
+
|
| 174 |
+
if self.position_bias:
|
| 175 |
+
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
|
| 176 |
+
# generate mother-set
|
| 177 |
+
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp)
|
| 178 |
+
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp)
|
| 179 |
+
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
|
| 180 |
+
biases = biases.flatten(1).transpose(0, 1).contiguous().float()
|
| 181 |
+
self.register_buffer('rpe_biases', biases)
|
| 182 |
+
|
| 183 |
+
# get pair-wise relative position index for each token inside the window
|
| 184 |
+
coords_h = torch.arange(self.H_sp)
|
| 185 |
+
coords_w = torch.arange(self.W_sp)
|
| 186 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
| 187 |
+
coords_flatten = torch.flatten(coords, 1)
|
| 188 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
| 189 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
| 190 |
+
relative_coords[:, :, 0] += self.H_sp - 1
|
| 191 |
+
relative_coords[:, :, 1] += self.W_sp - 1
|
| 192 |
+
relative_coords[:, :, 0] *= 2 * self.W_sp - 1
|
| 193 |
+
relative_position_index = relative_coords.sum(-1)
|
| 194 |
+
self.register_buffer('relative_position_index', relative_position_index)
|
| 195 |
+
|
| 196 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 197 |
+
|
| 198 |
+
def im2win(self, x, H, W):
|
| 199 |
+
B, N, C = x.shape
|
| 200 |
+
x = x.transpose(-2,-1).contiguous().view(B, C, H, W)
|
| 201 |
+
x = img2windows(x, self.H_sp, self.W_sp)
|
| 202 |
+
x = x.reshape(-1, self.H_sp* self.W_sp, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous()
|
| 203 |
+
return x
|
| 204 |
+
|
| 205 |
+
def forward(self, qkv, H, W, mask=None):
|
| 206 |
+
"""
|
| 207 |
+
Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size
|
| 208 |
+
Output: x (B, H, W, C)
|
| 209 |
+
"""
|
| 210 |
+
q,k,v = qkv[0], qkv[1], qkv[2]
|
| 211 |
+
|
| 212 |
+
B, L, C = q.shape
|
| 213 |
+
assert L == H * W, "flatten img_tokens has wrong size"
|
| 214 |
+
|
| 215 |
+
# partition the q,k,v, image to window
|
| 216 |
+
q = self.im2win(q, H, W)
|
| 217 |
+
k = self.im2win(k, H, W)
|
| 218 |
+
v = self.im2win(v, H, W)
|
| 219 |
+
|
| 220 |
+
q = q * self.scale
|
| 221 |
+
attn = (q @ k.transpose(-2, -1)) # B head N C @ B head C N --> B head N N
|
| 222 |
+
|
| 223 |
+
# calculate drpe
|
| 224 |
+
if self.position_bias:
|
| 225 |
+
pos = self.pos(self.rpe_biases)
|
| 226 |
+
# select position bias
|
| 227 |
+
relative_position_bias = pos[self.relative_position_index.view(-1)].view(
|
| 228 |
+
self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1)
|
| 229 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
| 230 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
| 231 |
+
|
| 232 |
+
N = attn.shape[3]
|
| 233 |
+
|
| 234 |
+
# use mask for shift window
|
| 235 |
+
if mask is not None:
|
| 236 |
+
nW = mask.shape[0]
|
| 237 |
+
attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
| 238 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
| 239 |
+
|
| 240 |
+
attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
|
| 241 |
+
attn = self.attn_drop(attn)
|
| 242 |
+
|
| 243 |
+
x = (attn @ v)
|
| 244 |
+
x = x.transpose(1, 2).reshape(-1, self.H_sp* self.W_sp, C) # B head N N @ B head N C
|
| 245 |
+
|
| 246 |
+
# merge the window, window to image
|
| 247 |
+
x = windows2img(x, self.H_sp, self.W_sp, H, W) # B H' W' C
|
| 248 |
+
|
| 249 |
+
return x
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
class Adaptive_Spatial_Attention(nn.Module):
|
| 253 |
+
# The implementation builds on CAT code https://github.com/Zhengchen1999/CAT
|
| 254 |
+
""" Adaptive Spatial Self-Attention
|
| 255 |
+
Args:
|
| 256 |
+
dim (int): Number of input channels.
|
| 257 |
+
num_heads (int): Number of attention heads. Default: 6
|
| 258 |
+
split_size (tuple(int)): Height and Width of spatial window.
|
| 259 |
+
shift_size (tuple(int)): Shift size for spatial window.
|
| 260 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 261 |
+
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
|
| 262 |
+
drop (float): Dropout rate. Default: 0.0
|
| 263 |
+
attn_drop (float): Attention dropout rate. Default: 0.0
|
| 264 |
+
rg_idx (int): The indentix of Residual Group (RG)
|
| 265 |
+
b_idx (int): The indentix of Block in each RG
|
| 266 |
+
"""
|
| 267 |
+
def __init__(self, dim, num_heads,
|
| 268 |
+
reso=64, split_size=[8,8], shift_size=[1,2], qkv_bias=False, qk_scale=None,
|
| 269 |
+
drop=0., attn_drop=0., rg_idx=0, b_idx=0):
|
| 270 |
+
super().__init__()
|
| 271 |
+
self.dim = dim
|
| 272 |
+
self.num_heads = num_heads
|
| 273 |
+
self.split_size = split_size
|
| 274 |
+
self.shift_size = shift_size
|
| 275 |
+
self.b_idx = b_idx
|
| 276 |
+
self.rg_idx = rg_idx
|
| 277 |
+
self.patches_resolution = reso
|
| 278 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 279 |
+
|
| 280 |
+
assert 0 <= self.shift_size[0] < self.split_size[0], "shift_size must in 0-split_size0"
|
| 281 |
+
assert 0 <= self.shift_size[1] < self.split_size[1], "shift_size must in 0-split_size1"
|
| 282 |
+
|
| 283 |
+
self.branch_num = 2
|
| 284 |
+
|
| 285 |
+
self.proj = nn.Linear(dim, dim)
|
| 286 |
+
self.proj_drop = nn.Dropout(drop)
|
| 287 |
+
|
| 288 |
+
self.attns = nn.ModuleList([
|
| 289 |
+
Spatial_Attention(
|
| 290 |
+
dim//2, idx = i,
|
| 291 |
+
split_size=split_size, num_heads=num_heads//2, dim_out=dim//2,
|
| 292 |
+
qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, position_bias=True)
|
| 293 |
+
for i in range(self.branch_num)])
|
| 294 |
+
|
| 295 |
+
if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (self.rg_idx % 2 != 0 and self.b_idx % 4 == 0):
|
| 296 |
+
attn_mask = self.calculate_mask(self.patches_resolution, self.patches_resolution)
|
| 297 |
+
self.register_buffer("attn_mask_0", attn_mask[0])
|
| 298 |
+
self.register_buffer("attn_mask_1", attn_mask[1])
|
| 299 |
+
else:
|
| 300 |
+
attn_mask = None
|
| 301 |
+
self.register_buffer("attn_mask_0", None)
|
| 302 |
+
self.register_buffer("attn_mask_1", None)
|
| 303 |
+
|
| 304 |
+
self.dwconv = nn.Sequential(
|
| 305 |
+
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim),
|
| 306 |
+
nn.BatchNorm2d(dim),
|
| 307 |
+
nn.GELU()
|
| 308 |
+
)
|
| 309 |
+
self.channel_interaction = nn.Sequential(
|
| 310 |
+
nn.AdaptiveAvgPool2d(1),
|
| 311 |
+
nn.Conv2d(dim, dim // 8, kernel_size=1),
|
| 312 |
+
nn.BatchNorm2d(dim // 8),
|
| 313 |
+
nn.GELU(),
|
| 314 |
+
nn.Conv2d(dim // 8, dim, kernel_size=1),
|
| 315 |
+
)
|
| 316 |
+
self.spatial_interaction = nn.Sequential(
|
| 317 |
+
nn.Conv2d(dim, dim // 16, kernel_size=1),
|
| 318 |
+
nn.BatchNorm2d(dim // 16),
|
| 319 |
+
nn.GELU(),
|
| 320 |
+
nn.Conv2d(dim // 16, 1, kernel_size=1)
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
def calculate_mask(self, H, W):
|
| 324 |
+
# The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
|
| 325 |
+
# calculate attention mask for shift window
|
| 326 |
+
img_mask_0 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=0
|
| 327 |
+
img_mask_1 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=1
|
| 328 |
+
h_slices_0 = (slice(0, -self.split_size[0]),
|
| 329 |
+
slice(-self.split_size[0], -self.shift_size[0]),
|
| 330 |
+
slice(-self.shift_size[0], None))
|
| 331 |
+
w_slices_0 = (slice(0, -self.split_size[1]),
|
| 332 |
+
slice(-self.split_size[1], -self.shift_size[1]),
|
| 333 |
+
slice(-self.shift_size[1], None))
|
| 334 |
+
|
| 335 |
+
h_slices_1 = (slice(0, -self.split_size[1]),
|
| 336 |
+
slice(-self.split_size[1], -self.shift_size[1]),
|
| 337 |
+
slice(-self.shift_size[1], None))
|
| 338 |
+
w_slices_1 = (slice(0, -self.split_size[0]),
|
| 339 |
+
slice(-self.split_size[0], -self.shift_size[0]),
|
| 340 |
+
slice(-self.shift_size[0], None))
|
| 341 |
+
cnt = 0
|
| 342 |
+
for h in h_slices_0:
|
| 343 |
+
for w in w_slices_0:
|
| 344 |
+
img_mask_0[:, h, w, :] = cnt
|
| 345 |
+
cnt += 1
|
| 346 |
+
cnt = 0
|
| 347 |
+
for h in h_slices_1:
|
| 348 |
+
for w in w_slices_1:
|
| 349 |
+
img_mask_1[:, h, w, :] = cnt
|
| 350 |
+
cnt += 1
|
| 351 |
+
|
| 352 |
+
# calculate mask for window-0
|
| 353 |
+
img_mask_0 = img_mask_0.view(1, H // self.split_size[0], self.split_size[0], W // self.split_size[1], self.split_size[1], 1)
|
| 354 |
+
img_mask_0 = img_mask_0.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.split_size[0], self.split_size[1], 1) # nW, sw[0], sw[1], 1
|
| 355 |
+
mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1])
|
| 356 |
+
attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2)
|
| 357 |
+
attn_mask_0 = attn_mask_0.masked_fill(attn_mask_0 != 0, float(-100.0)).masked_fill(attn_mask_0 == 0, float(0.0))
|
| 358 |
+
|
| 359 |
+
# calculate mask for window-1
|
| 360 |
+
img_mask_1 = img_mask_1.view(1, H // self.split_size[1], self.split_size[1], W // self.split_size[0], self.split_size[0], 1)
|
| 361 |
+
img_mask_1 = img_mask_1.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.split_size[1], self.split_size[0], 1) # nW, sw[1], sw[0], 1
|
| 362 |
+
mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0])
|
| 363 |
+
attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2)
|
| 364 |
+
attn_mask_1 = attn_mask_1.masked_fill(attn_mask_1 != 0, float(-100.0)).masked_fill(attn_mask_1 == 0, float(0.0))
|
| 365 |
+
|
| 366 |
+
return attn_mask_0, attn_mask_1
|
| 367 |
+
|
| 368 |
+
def forward(self, x, H, W):
|
| 369 |
+
"""
|
| 370 |
+
Input: x: (B, H*W, C), H, W
|
| 371 |
+
Output: x: (B, H*W, C)
|
| 372 |
+
"""
|
| 373 |
+
B, L, C = x.shape
|
| 374 |
+
assert L == H * W, "flatten img_tokens has wrong size"
|
| 375 |
+
|
| 376 |
+
qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3) # 3, B, HW, C
|
| 377 |
+
# V without partition
|
| 378 |
+
v = qkv[2].transpose(-2,-1).contiguous().view(B, C, H, W)
|
| 379 |
+
|
| 380 |
+
# image padding
|
| 381 |
+
max_split_size = max(self.split_size[0], self.split_size[1])
|
| 382 |
+
pad_l = pad_t = 0
|
| 383 |
+
pad_r = (max_split_size - W % max_split_size) % max_split_size
|
| 384 |
+
pad_b = (max_split_size - H % max_split_size) % max_split_size
|
| 385 |
+
|
| 386 |
+
qkv = qkv.reshape(3*B, H, W, C).permute(0, 3, 1, 2) # 3B C H W
|
| 387 |
+
qkv = F.pad(qkv, (pad_l, pad_r, pad_t, pad_b)).reshape(3, B, C, -1).transpose(-2, -1) # l r t b
|
| 388 |
+
_H = pad_b + H
|
| 389 |
+
_W = pad_r + W
|
| 390 |
+
_L = _H * _W
|
| 391 |
+
|
| 392 |
+
# window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged
|
| 393 |
+
# shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ...
|
| 394 |
+
if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (self.rg_idx % 2 != 0 and self.b_idx % 4 == 0):
|
| 395 |
+
qkv = qkv.view(3, B, _H, _W, C)
|
| 396 |
+
qkv_0 = torch.roll(qkv[:,:,:,:,:C//2], shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(2, 3))
|
| 397 |
+
qkv_0 = qkv_0.view(3, B, _L, C//2)
|
| 398 |
+
qkv_1 = torch.roll(qkv[:,:,:,:,C//2:], shifts=(-self.shift_size[1], -self.shift_size[0]), dims=(2, 3))
|
| 399 |
+
qkv_1 = qkv_1.view(3, B, _L, C//2)
|
| 400 |
+
|
| 401 |
+
if self.patches_resolution != _H or self.patches_resolution != _W:
|
| 402 |
+
mask_tmp = self.calculate_mask(_H, _W)
|
| 403 |
+
x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device))
|
| 404 |
+
x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device))
|
| 405 |
+
else:
|
| 406 |
+
x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0)
|
| 407 |
+
x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1)
|
| 408 |
+
|
| 409 |
+
x1 = torch.roll(x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2))
|
| 410 |
+
x2 = torch.roll(x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2))
|
| 411 |
+
x1 = x1[:, :H, :W, :].reshape(B, L, C//2)
|
| 412 |
+
x2 = x2[:, :H, :W, :].reshape(B, L, C//2)
|
| 413 |
+
# attention output
|
| 414 |
+
attened_x = torch.cat([x1,x2], dim=2)
|
| 415 |
+
|
| 416 |
+
else:
|
| 417 |
+
x1 = self.attns[0](qkv[:,:,:,:C//2], _H, _W)[:, :H, :W, :].reshape(B, L, C//2)
|
| 418 |
+
x2 = self.attns[1](qkv[:,:,:,C//2:], _H, _W)[:, :H, :W, :].reshape(B, L, C//2)
|
| 419 |
+
# attention output
|
| 420 |
+
attened_x = torch.cat([x1,x2], dim=2)
|
| 421 |
+
|
| 422 |
+
# convolution output
|
| 423 |
+
conv_x = self.dwconv(v)
|
| 424 |
+
|
| 425 |
+
# Adaptive Interaction Module (AIM)
|
| 426 |
+
# C-Map (before sigmoid)
|
| 427 |
+
channel_map = self.channel_interaction(conv_x).permute(0, 2, 3, 1).contiguous().view(B, 1, C)
|
| 428 |
+
# S-Map (before sigmoid)
|
| 429 |
+
attention_reshape = attened_x.transpose(-2,-1).contiguous().view(B, C, H, W)
|
| 430 |
+
spatial_map = self.spatial_interaction(attention_reshape)
|
| 431 |
+
|
| 432 |
+
# C-I
|
| 433 |
+
attened_x = attened_x * torch.sigmoid(channel_map)
|
| 434 |
+
# S-I
|
| 435 |
+
conv_x = torch.sigmoid(spatial_map) * conv_x
|
| 436 |
+
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
|
| 437 |
+
|
| 438 |
+
x = attened_x + conv_x
|
| 439 |
+
|
| 440 |
+
x = self.proj(x)
|
| 441 |
+
x = self.proj_drop(x)
|
| 442 |
+
|
| 443 |
+
return x
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
class Adaptive_Channel_Attention(nn.Module):
|
| 447 |
+
# The implementation builds on XCiT code https://github.com/facebookresearch/xcit
|
| 448 |
+
""" Adaptive Channel Self-Attention
|
| 449 |
+
Args:
|
| 450 |
+
dim (int): Number of input channels.
|
| 451 |
+
num_heads (int): Number of attention heads. Default: 6
|
| 452 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 453 |
+
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
|
| 454 |
+
attn_drop (float): Attention dropout rate. Default: 0.0
|
| 455 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
| 456 |
+
"""
|
| 457 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
| 458 |
+
super().__init__()
|
| 459 |
+
self.num_heads = num_heads
|
| 460 |
+
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
|
| 461 |
+
|
| 462 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 463 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 464 |
+
self.proj = nn.Linear(dim, dim)
|
| 465 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 466 |
+
|
| 467 |
+
self.dwconv = nn.Sequential(
|
| 468 |
+
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim),
|
| 469 |
+
nn.BatchNorm2d(dim),
|
| 470 |
+
nn.GELU()
|
| 471 |
+
)
|
| 472 |
+
self.channel_interaction = nn.Sequential(
|
| 473 |
+
nn.AdaptiveAvgPool2d(1),
|
| 474 |
+
nn.Conv2d(dim, dim // 8, kernel_size=1),
|
| 475 |
+
nn.BatchNorm2d(dim // 8),
|
| 476 |
+
nn.GELU(),
|
| 477 |
+
nn.Conv2d(dim // 8, dim, kernel_size=1),
|
| 478 |
+
)
|
| 479 |
+
self.spatial_interaction = nn.Sequential(
|
| 480 |
+
nn.Conv2d(dim, dim // 16, kernel_size=1),
|
| 481 |
+
nn.BatchNorm2d(dim // 16),
|
| 482 |
+
nn.GELU(),
|
| 483 |
+
nn.Conv2d(dim // 16, 1, kernel_size=1)
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
def forward(self, x, H, W):
|
| 487 |
+
"""
|
| 488 |
+
Input: x: (B, H*W, C), H, W
|
| 489 |
+
Output: x: (B, H*W, C)
|
| 490 |
+
"""
|
| 491 |
+
B, N, C = x.shape
|
| 492 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 493 |
+
qkv = qkv.permute(2, 0, 3, 1, 4)
|
| 494 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 495 |
+
|
| 496 |
+
q = q.transpose(-2, -1)
|
| 497 |
+
k = k.transpose(-2, -1)
|
| 498 |
+
v = v.transpose(-2, -1)
|
| 499 |
+
|
| 500 |
+
v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W)
|
| 501 |
+
|
| 502 |
+
q = torch.nn.functional.normalize(q, dim=-1)
|
| 503 |
+
k = torch.nn.functional.normalize(k, dim=-1)
|
| 504 |
+
|
| 505 |
+
attn = (q @ k.transpose(-2, -1)) * self.temperature
|
| 506 |
+
attn = attn.softmax(dim=-1)
|
| 507 |
+
attn = self.attn_drop(attn)
|
| 508 |
+
|
| 509 |
+
# attention output
|
| 510 |
+
attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)
|
| 511 |
+
|
| 512 |
+
# convolution output
|
| 513 |
+
conv_x = self.dwconv(v_)
|
| 514 |
+
|
| 515 |
+
# Adaptive Interaction Module (AIM)
|
| 516 |
+
# C-Map (before sigmoid)
|
| 517 |
+
attention_reshape = attened_x.transpose(-2,-1).contiguous().view(B, C, H, W)
|
| 518 |
+
channel_map = self.channel_interaction(attention_reshape)
|
| 519 |
+
# S-Map (before sigmoid)
|
| 520 |
+
spatial_map = self.spatial_interaction(conv_x).permute(0, 2, 3, 1).contiguous().view(B, N, 1)
|
| 521 |
+
|
| 522 |
+
# S-I
|
| 523 |
+
attened_x = attened_x * torch.sigmoid(spatial_map)
|
| 524 |
+
# C-I
|
| 525 |
+
conv_x = conv_x * torch.sigmoid(channel_map)
|
| 526 |
+
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C)
|
| 527 |
+
|
| 528 |
+
x = attened_x + conv_x
|
| 529 |
+
|
| 530 |
+
x = self.proj(x)
|
| 531 |
+
x = self.proj_drop(x)
|
| 532 |
+
|
| 533 |
+
return x
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
class DATB(nn.Module):
|
| 537 |
+
def __init__(self, dim, num_heads, reso=64, split_size=[2,4],shift_size=[1,2], expansion_factor=4., qkv_bias=False, qk_scale=None, drop=0.,
|
| 538 |
+
attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rg_idx=0, b_idx=0):
|
| 539 |
+
super().__init__()
|
| 540 |
+
|
| 541 |
+
self.norm1 = norm_layer(dim)
|
| 542 |
+
|
| 543 |
+
if b_idx % 2 == 0:
|
| 544 |
+
# DSTB
|
| 545 |
+
self.attn = Adaptive_Spatial_Attention(
|
| 546 |
+
dim, num_heads=num_heads, reso=reso, split_size=split_size, shift_size=shift_size, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 547 |
+
drop=drop, attn_drop=attn_drop, rg_idx=rg_idx, b_idx=b_idx
|
| 548 |
+
)
|
| 549 |
+
else:
|
| 550 |
+
# DCTB
|
| 551 |
+
self.attn = Adaptive_Channel_Attention(
|
| 552 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
|
| 553 |
+
proj_drop=drop
|
| 554 |
+
)
|
| 555 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 556 |
+
|
| 557 |
+
ffn_hidden_dim = int(dim * expansion_factor)
|
| 558 |
+
self.ffn = SGFN(in_features=dim, hidden_features=ffn_hidden_dim, out_features=dim, act_layer=act_layer)
|
| 559 |
+
self.norm2 = norm_layer(dim)
|
| 560 |
+
|
| 561 |
+
def forward(self, x, x_size):
|
| 562 |
+
"""
|
| 563 |
+
Input: x: (B, H*W, C), x_size: (H, W)
|
| 564 |
+
Output: x: (B, H*W, C)
|
| 565 |
+
"""
|
| 566 |
+
H , W = x_size
|
| 567 |
+
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
| 568 |
+
x = x + self.drop_path(self.ffn(self.norm2(x), H, W))
|
| 569 |
+
|
| 570 |
+
return x
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
class ResidualGroup(nn.Module):
|
| 574 |
+
""" ResidualGroup
|
| 575 |
+
Args:
|
| 576 |
+
dim (int): Number of input channels.
|
| 577 |
+
reso (int): Input resolution.
|
| 578 |
+
num_heads (int): Number of attention heads.
|
| 579 |
+
split_size (tuple(int)): Height and Width of spatial window.
|
| 580 |
+
expansion_factor (float): Ratio of ffn hidden dim to embedding dim.
|
| 581 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 582 |
+
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
| 583 |
+
drop (float): Dropout rate. Default: 0
|
| 584 |
+
attn_drop(float): Attention dropout rate. Default: 0
|
| 585 |
+
drop_paths (float | None): Stochastic depth rate.
|
| 586 |
+
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
| 587 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
|
| 588 |
+
depth (int): Number of dual aggregation Transformer blocks in residual group.
|
| 589 |
+
use_chk (bool): Whether to use checkpointing to save memory.
|
| 590 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
| 591 |
+
"""
|
| 592 |
+
def __init__( self,
|
| 593 |
+
dim,
|
| 594 |
+
reso,
|
| 595 |
+
num_heads,
|
| 596 |
+
split_size=[2,4],
|
| 597 |
+
expansion_factor=4.,
|
| 598 |
+
qkv_bias=False,
|
| 599 |
+
qk_scale=None,
|
| 600 |
+
drop=0.,
|
| 601 |
+
attn_drop=0.,
|
| 602 |
+
drop_paths=None,
|
| 603 |
+
act_layer=nn.GELU,
|
| 604 |
+
norm_layer=nn.LayerNorm,
|
| 605 |
+
depth=2,
|
| 606 |
+
use_chk=False,
|
| 607 |
+
resi_connection='1conv',
|
| 608 |
+
rg_idx=0):
|
| 609 |
+
super().__init__()
|
| 610 |
+
self.use_chk = use_chk
|
| 611 |
+
self.reso = reso
|
| 612 |
+
|
| 613 |
+
self.blocks = nn.ModuleList([
|
| 614 |
+
DATB(
|
| 615 |
+
dim=dim,
|
| 616 |
+
num_heads=num_heads,
|
| 617 |
+
reso = reso,
|
| 618 |
+
split_size = split_size,
|
| 619 |
+
shift_size = [split_size[0]//2, split_size[1]//2],
|
| 620 |
+
expansion_factor=expansion_factor,
|
| 621 |
+
qkv_bias=qkv_bias,
|
| 622 |
+
qk_scale=qk_scale,
|
| 623 |
+
drop=drop,
|
| 624 |
+
attn_drop=attn_drop,
|
| 625 |
+
drop_path=drop_paths[i],
|
| 626 |
+
act_layer=act_layer,
|
| 627 |
+
norm_layer=norm_layer,
|
| 628 |
+
rg_idx = rg_idx,
|
| 629 |
+
b_idx = i,
|
| 630 |
+
)for i in range(depth)])
|
| 631 |
+
|
| 632 |
+
if resi_connection == '1conv':
|
| 633 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
| 634 |
+
elif resi_connection == '3conv':
|
| 635 |
+
self.conv = nn.Sequential(
|
| 636 |
+
nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 637 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 638 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
| 639 |
+
|
| 640 |
+
def forward(self, x, x_size):
|
| 641 |
+
"""
|
| 642 |
+
Input: x: (B, H*W, C), x_size: (H, W)
|
| 643 |
+
Output: x: (B, H*W, C)
|
| 644 |
+
"""
|
| 645 |
+
H, W = x_size
|
| 646 |
+
res = x
|
| 647 |
+
for blk in self.blocks:
|
| 648 |
+
if self.use_chk:
|
| 649 |
+
x = checkpoint.checkpoint(blk, x, x_size)
|
| 650 |
+
else:
|
| 651 |
+
x = blk(x, x_size)
|
| 652 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
|
| 653 |
+
x = self.conv(x)
|
| 654 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
| 655 |
+
x = res + x
|
| 656 |
+
|
| 657 |
+
return x
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
class Upsample(nn.Sequential):
|
| 661 |
+
"""Upsample module.
|
| 662 |
+
Args:
|
| 663 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
| 664 |
+
num_feat (int): Channel number of intermediate features.
|
| 665 |
+
"""
|
| 666 |
+
def __init__(self, scale, num_feat):
|
| 667 |
+
m = []
|
| 668 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
| 669 |
+
for _ in range(int(math.log(scale, 2))):
|
| 670 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 671 |
+
m.append(nn.PixelShuffle(2))
|
| 672 |
+
elif scale == 3:
|
| 673 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 674 |
+
m.append(nn.PixelShuffle(3))
|
| 675 |
+
else:
|
| 676 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
| 677 |
+
super(Upsample, self).__init__(*m)
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
class UpsampleOneStep(nn.Sequential):
|
| 681 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
| 682 |
+
Used in lightweight SR to save parameters.
|
| 683 |
+
|
| 684 |
+
Args:
|
| 685 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
| 686 |
+
num_feat (int): Channel number of intermediate features.
|
| 687 |
+
|
| 688 |
+
"""
|
| 689 |
+
|
| 690 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
| 691 |
+
self.num_feat = num_feat
|
| 692 |
+
self.input_resolution = input_resolution
|
| 693 |
+
m = []
|
| 694 |
+
m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
|
| 695 |
+
m.append(nn.PixelShuffle(scale))
|
| 696 |
+
super(UpsampleOneStep, self).__init__(*m)
|
| 697 |
+
|
| 698 |
+
def flops(self):
|
| 699 |
+
h, w = self.input_resolution
|
| 700 |
+
flops = h * w * self.num_feat * 3 * 9
|
| 701 |
+
return flops
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
class DAT(nn.Module):
|
| 705 |
+
""" Dual Aggregation Transformer
|
| 706 |
+
Args:
|
| 707 |
+
img_size (int): Input image size. Default: 64
|
| 708 |
+
in_chans (int): Number of input image channels. Default: 3
|
| 709 |
+
embed_dim (int): Patch embedding dimension. Default: 180
|
| 710 |
+
depths (tuple(int)): Depth of each residual group (number of DATB in each RG).
|
| 711 |
+
split_size (tuple(int)): Height and Width of spatial window.
|
| 712 |
+
num_heads (tuple(int)): Number of attention heads in different residual groups.
|
| 713 |
+
expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4
|
| 714 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 715 |
+
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
| 716 |
+
drop_rate (float): Dropout rate. Default: 0
|
| 717 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
| 718 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
| 719 |
+
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
| 720 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
|
| 721 |
+
use_chk (bool): Whether to use checkpointing to save memory.
|
| 722 |
+
upscale: Upscale factor. 2/3/4 for image SR
|
| 723 |
+
img_range: Image range. 1. or 255.
|
| 724 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
| 725 |
+
"""
|
| 726 |
+
def __init__(self,
|
| 727 |
+
img_size=64,
|
| 728 |
+
in_chans=3,
|
| 729 |
+
embed_dim=180,
|
| 730 |
+
split_size=[2,4],
|
| 731 |
+
depth=[2,2,2,2],
|
| 732 |
+
num_heads=[2,2,2,2],
|
| 733 |
+
expansion_factor=4.,
|
| 734 |
+
qkv_bias=True,
|
| 735 |
+
qk_scale=None,
|
| 736 |
+
drop_rate=0.,
|
| 737 |
+
attn_drop_rate=0.,
|
| 738 |
+
drop_path_rate=0.1,
|
| 739 |
+
act_layer=nn.GELU,
|
| 740 |
+
norm_layer=nn.LayerNorm,
|
| 741 |
+
use_chk=False,
|
| 742 |
+
upscale=2,
|
| 743 |
+
img_range=1.,
|
| 744 |
+
resi_connection='1conv',
|
| 745 |
+
upsampler='pixelshuffle',
|
| 746 |
+
**kwargs):
|
| 747 |
+
super().__init__()
|
| 748 |
+
|
| 749 |
+
num_in_ch = in_chans
|
| 750 |
+
num_out_ch = in_chans
|
| 751 |
+
num_feat = 64
|
| 752 |
+
self.img_range = img_range
|
| 753 |
+
if in_chans == 3:
|
| 754 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
| 755 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
| 756 |
+
else:
|
| 757 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
| 758 |
+
self.upscale = upscale
|
| 759 |
+
self.upsampler = upsampler
|
| 760 |
+
|
| 761 |
+
# ------------------------- 1, Shallow Feature Extraction ------------------------- #
|
| 762 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
| 763 |
+
|
| 764 |
+
# ------------------------- 2, Deep Feature Extraction ------------------------- #
|
| 765 |
+
self.num_layers = len(depth)
|
| 766 |
+
self.use_chk = use_chk
|
| 767 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
| 768 |
+
heads=num_heads
|
| 769 |
+
|
| 770 |
+
self.before_RG = nn.Sequential(
|
| 771 |
+
Rearrange('b c h w -> b (h w) c'),
|
| 772 |
+
nn.LayerNorm(embed_dim)
|
| 773 |
+
)
|
| 774 |
+
|
| 775 |
+
curr_dim = embed_dim
|
| 776 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))] # stochastic depth decay rule
|
| 777 |
+
|
| 778 |
+
self.layers = nn.ModuleList()
|
| 779 |
+
for i in range(self.num_layers):
|
| 780 |
+
layer = ResidualGroup(
|
| 781 |
+
dim=embed_dim,
|
| 782 |
+
num_heads=heads[i],
|
| 783 |
+
reso=img_size,
|
| 784 |
+
split_size=split_size,
|
| 785 |
+
expansion_factor=expansion_factor,
|
| 786 |
+
qkv_bias=qkv_bias,
|
| 787 |
+
qk_scale=qk_scale,
|
| 788 |
+
drop=drop_rate,
|
| 789 |
+
attn_drop=attn_drop_rate,
|
| 790 |
+
drop_paths=dpr[sum(depth[:i]):sum(depth[:i + 1])],
|
| 791 |
+
act_layer=act_layer,
|
| 792 |
+
norm_layer=norm_layer,
|
| 793 |
+
depth=depth[i],
|
| 794 |
+
use_chk=use_chk,
|
| 795 |
+
resi_connection=resi_connection,
|
| 796 |
+
rg_idx=i)
|
| 797 |
+
self.layers.append(layer)
|
| 798 |
+
|
| 799 |
+
self.norm = norm_layer(curr_dim)
|
| 800 |
+
# build the last conv layer in deep feature extraction
|
| 801 |
+
if resi_connection == '1conv':
|
| 802 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
| 803 |
+
elif resi_connection == '3conv':
|
| 804 |
+
# to save parameters and memory
|
| 805 |
+
self.conv_after_body = nn.Sequential(
|
| 806 |
+
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 807 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 808 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
| 809 |
+
|
| 810 |
+
# ------------------------- 3, Reconstruction ------------------------- #
|
| 811 |
+
if self.upsampler == 'pixelshuffle':
|
| 812 |
+
# for classical SR
|
| 813 |
+
self.conv_before_upsample = nn.Sequential(
|
| 814 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
| 815 |
+
self.upsample = Upsample(upscale, num_feat)
|
| 816 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
| 817 |
+
elif self.upsampler == 'pixelshuffledirect':
|
| 818 |
+
# for lightweight SR (to save parameters)
|
| 819 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
| 820 |
+
(img_size, img_size))
|
| 821 |
+
|
| 822 |
+
self.apply(self._init_weights)
|
| 823 |
+
|
| 824 |
+
def _init_weights(self, m):
|
| 825 |
+
if isinstance(m, nn.Linear):
|
| 826 |
+
trunc_normal_(m.weight, std=.02)
|
| 827 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 828 |
+
nn.init.constant_(m.bias, 0)
|
| 829 |
+
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)):
|
| 830 |
+
nn.init.constant_(m.bias, 0)
|
| 831 |
+
nn.init.constant_(m.weight, 1.0)
|
| 832 |
+
|
| 833 |
+
def forward_features(self, x):
|
| 834 |
+
_, _, H, W = x.shape
|
| 835 |
+
x_size = [H, W]
|
| 836 |
+
x = self.before_RG(x)
|
| 837 |
+
for layer in self.layers:
|
| 838 |
+
x = layer(x, x_size)
|
| 839 |
+
x = self.norm(x)
|
| 840 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
|
| 841 |
+
|
| 842 |
+
return x
|
| 843 |
+
|
| 844 |
+
def forward(self, x):
|
| 845 |
+
"""
|
| 846 |
+
Input: x: (B, C, H, W)
|
| 847 |
+
"""
|
| 848 |
+
self.mean = self.mean.type_as(x)
|
| 849 |
+
x = (x - self.mean) * self.img_range
|
| 850 |
+
|
| 851 |
+
if self.upsampler == 'pixelshuffle':
|
| 852 |
+
# for image SR
|
| 853 |
+
x = self.conv_first(x)
|
| 854 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
| 855 |
+
x = self.conv_before_upsample(x)
|
| 856 |
+
x = self.conv_last(self.upsample(x))
|
| 857 |
+
elif self.upsampler == 'pixelshuffledirect':
|
| 858 |
+
# for lightweight SR
|
| 859 |
+
x = self.conv_first(x)
|
| 860 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
| 861 |
+
x = self.upsample(x)
|
| 862 |
+
|
| 863 |
+
x = x / self.img_range + self.mean
|
| 864 |
+
return x
|
| 865 |
+
|
| 866 |
+
|
| 867 |
+
if __name__ == '__main__':
|
| 868 |
+
upscale = 1
|
| 869 |
+
height = 64
|
| 870 |
+
width = 64
|
| 871 |
+
model = DAT(upscale=4,
|
| 872 |
+
in_chans=3,
|
| 873 |
+
img_size=64,
|
| 874 |
+
img_range=1.,
|
| 875 |
+
depth=[18],
|
| 876 |
+
embed_dim=60,
|
| 877 |
+
num_heads=[6],
|
| 878 |
+
expansion_factor=2,
|
| 879 |
+
resi_connection='3conv',
|
| 880 |
+
split_size=[8,32],
|
| 881 |
+
upsampler='pixelshuffledirect',
|
| 882 |
+
).cuda().eval()
|
| 883 |
+
|
| 884 |
+
print(height, width)
|
| 885 |
+
|
| 886 |
+
x = torch.randn((1, 3, height, width)).cuda()
|
| 887 |
+
x = model(x)
|
| 888 |
+
|
| 889 |
+
print(x.shape)
|
test_code/test_utils.py
CHANGED
|
@@ -7,6 +7,7 @@ sys.path.append(root_path)
|
|
| 7 |
from opt import opt
|
| 8 |
from architecture.rrdb import RRDBNet
|
| 9 |
from architecture.grl import GRL
|
|
|
|
| 10 |
from architecture.swinir import SwinIR
|
| 11 |
from architecture.cunet import UNet_Full
|
| 12 |
|
|
@@ -173,4 +174,47 @@ def load_grl(generator_weight_PATH, scale=4):
|
|
| 173 |
print(f"Number of parameters {num_params / 10 ** 6: 0.2f}")
|
| 174 |
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
return generator
|
|
|
|
| 7 |
from opt import opt
|
| 8 |
from architecture.rrdb import RRDBNet
|
| 9 |
from architecture.grl import GRL
|
| 10 |
+
from architecture.dat import DAT
|
| 11 |
from architecture.swinir import SwinIR
|
| 12 |
from architecture.cunet import UNet_Full
|
| 13 |
|
|
|
|
| 174 |
print(f"Number of parameters {num_params / 10 ** 6: 0.2f}")
|
| 175 |
|
| 176 |
|
| 177 |
+
return generator
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def load_dat(generator_weight_PATH, scale=4):
|
| 182 |
+
|
| 183 |
+
# Load the checkpoint
|
| 184 |
+
checkpoint_g = torch.load(generator_weight_PATH)
|
| 185 |
+
|
| 186 |
+
# Find the generator weight
|
| 187 |
+
if 'model_state_dict' in checkpoint_g:
|
| 188 |
+
weight = checkpoint_g['model_state_dict']
|
| 189 |
+
|
| 190 |
+
# DAT small model in default
|
| 191 |
+
generator = DAT(upscale = 4,
|
| 192 |
+
in_chans = 3,
|
| 193 |
+
img_size = 64,
|
| 194 |
+
img_range = 1.,
|
| 195 |
+
depth = [6, 6, 6, 6, 6, 6],
|
| 196 |
+
embed_dim = 180,
|
| 197 |
+
num_heads = [6, 6, 6, 6, 6, 6],
|
| 198 |
+
expansion_factor = 2,
|
| 199 |
+
resi_connection = '1conv',
|
| 200 |
+
split_size = [8, 16],
|
| 201 |
+
upsampler = 'pixelshuffledirect',
|
| 202 |
+
).cuda()
|
| 203 |
+
|
| 204 |
+
else:
|
| 205 |
+
print("This weight is not supported")
|
| 206 |
+
os._exit(0)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
generator.load_state_dict(weight)
|
| 210 |
+
generator = generator.eval().cuda()
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
num_params = 0
|
| 214 |
+
for p in generator.parameters():
|
| 215 |
+
if p.requires_grad:
|
| 216 |
+
num_params += p.numel()
|
| 217 |
+
print(f"Number of parameters {num_params / 10 ** 6: 0.2f}")
|
| 218 |
+
|
| 219 |
+
|
| 220 |
return generator
|