Spaces:
Sleeping
Sleeping
File size: 21,351 Bytes
59b2a81 e1f6ef4 59b2a81 aa505db 59b2a81 8dea111 59b2a81 533f466 e1f6ef4 533f466 59b2a81 533f466 7d9885d 59b2a81 7d9885d 59b2a81 7d9885d 59b2a81 7d9885d 533f466 59b2a81 8dea111 59b2a81 e1f6ef4 59b2a81 ab36898 8dea111 59b2a81 10b6682 59b2a81 10b6682 59b2a81 aa505db 2d65c0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
# *************************************************************************
# Copyright (2023) Bytedance Inc.
#
# Copyright (2023) DragDiffusion Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# *************************************************************************
import os, shutil, sys
import urllib.request
import argparse
import imageio
import datetime, pytz
import math
import cv2
import collections
import numpy as np
import gradio as gr
from PIL import Image
import spaces
import torch
from pathlib import Path
from omegaconf import OmegaConf
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from accelerate import Accelerator
from accelerate.utils import ProjectConfiguration
from diffusers import (
AutoencoderKLTemporalDecoder,
DDPMScheduler,
)
from diffusers.utils import check_min_version, is_wandb_available, load_image, export_to_video
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, PretrainedConfig
# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from train_code.train_svd import import_pretrained_text_encoder
from data_loader.video_dataset import tokenize_captions
from data_loader.video_this_that_dataset import get_thisthat_sam
from svd.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from svd.pipeline_stable_video_diffusion import StableVideoDiffusionPipeline
from svd.temporal_controlnet import ControlNetModel
from svd.pipeline_stable_video_diffusion_controlnet import StableVideoDiffusionControlNetPipeline
from utils.optical_flow_utils import bivariate_Gaussian
# For the 2D dilation
blur_kernel = bivariate_Gaussian(99, 10, 10, 0, grid = None, isotropic = True)
# Import
# LENGTH=480 # length of the square area displaying/editing images
HEIGHT = 256
WIDTH = 384
MARKDOWN = \
"""
<div align='center'>
<h1> This&That: Language-Gesture Controlled Video Generation for Robot Planning </h1> \
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
<a href='https://kiteretsu77.github.io/BoyangWang/'>Boyang Wang</a>, \
<a href='https://www.linkedin.com/in/niksridhar/'>Nikhil Sridhar</a>, \
<a href='https://cfeng16.github.io/'>Chao Feng</a>, \
<a href='https://mvandermerwe.github.io/'>Mark Van der Merwe</a>, \
<a href='https://fishbotics.com/'>Adam Fishman</a>, \
<a href='https://www.mmintlab.com/people/nima-fazeli/'>Nima Fazeli</a>, \
<a href='https://jjparkcv.github.io/'>Jeong Joon Park</a> \
</h2> \
<a style='font-size:18px;color: #000000' href='https://github.com/Kiteretsu77/This_and_That_VDM'> [Github] </a> \
<a style='font-size:18px;color: #000000' href='http://arxiv.org/abs/2407.05530'> [ArXiv] </a> \
<a style='font-size:18px;color: #000000' href='https://cfeng16.github.io/this-and-that/'> [Project Page] </a> </div> \
</div>
This&That is a robotics scenario (based on the Bridge dataset for this demo), a Language-Gesture-Image-conditioned Video Generation Model for Robot Planning.
This demo focuses on the Video Diffusion Model.
Only the VGL mode (image + language + gesture conditioned) is provided, but you can find the complete test code and all pretrained weights available.
### Note: The default gesture point indices are [4, 10] (5th and 11th) for two gesture points, or [4] (5th) for one gesture point.
### Note: Currently, the supported resolution is 256x384.
### Note: Click "Clear All" to reset everything, or "Undo Point" to remove the last gesture point.
### Note: The first run may take longer. Clicking "Clear All" before each run is the safest option.
If **This&That** is helpful, please star the [GitHub Repo](https://github.com/Kiteretsu77/This_and_That_VDM). Thank you!
"""
def store_img(img):
# when new image is uploaded, `selected_points` should be empty
return img, []
def clear_all():
return None, \
gr.Image(value=None, height=HEIGHT, width=WIDTH, interactive=False), \
None, [] # selected points
def undo_points(original_image):
img = original_image.copy()
return img, []
# User click the image to get points, and show the points on the image [From https://github.com/Yujun-Shi/DragDiffusion]
def get_points(img, original_image, sel_pix, evt: gr.SelectData):
# collect the selected point
sel_pix.append(evt.index)
if len(sel_pix) > 2:
raise gr.Error("We only at most support two points")
if original_image is None:
original_image = img.copy()
# draw points
points = []
for idx, point in enumerate(sel_pix):
if idx % 2 == 0:
# draw a red circle at the handle point
cv2.circle(img, tuple(point), 10, (255, 0, 0), -1)
else:
# draw a blue circle at the handle point
cv2.circle(img, tuple(point), 10, (0, 255, 0), -1)
points.append(tuple(point))
# draw an arrow from handle point to target point
# if len(points) == 2:
# cv2.arrowedLine(img, points[0], points[1], (255, 255, 255), 4, tipLength=0.5)
# points = []
return [img if isinstance(img, np.ndarray) else np.array(img), original_image]
@spaces.GPU(duration=120)
def gesturenet_inference(ref_image, prompt, selected_points):
print("The time now is ", datetime.datetime.now(pytz.timezone('US/Eastern')))
# Check some paramter, must have prompt and selected points
if prompt == "" or prompt is None:
raise gr.Error("Please input text prompt")
if selected_points == []:
raise gr.Error("Please click one/two points in the Image")
# Prepare the setting
frame_idxs = [4, 10]
use_ambiguous_prompt = False
model_type = "GestureNet"
huggingface_pretrained_path = "HikariDawn/This-and-That-1.1"
print("Text prompt is ", prompt)
# Prepare tmp folder
store_folder_name = "tmp"
if os.path.exists(store_folder_name):
shutil.rmtree(store_folder_name)
os.makedirs(store_folder_name)
# Read the yaml setting files (Very important for loading hyperparamters needed)
if not os.path.exists(huggingface_pretrained_path):
yaml_download_path = hf_hub_download(repo_id=huggingface_pretrained_path, subfolder="unet", filename="train_image2video.yaml")
if model_type == "GestureNet":
yaml_download_path = hf_hub_download(repo_id=huggingface_pretrained_path, subfolder="gesturenet", filename="train_image2video_gesturenet.yaml")
else: # If the path is a local path we can concatenate it here
yaml_download_path = os.path.join(huggingface_pretrained_path, "unet", "train_image2video.yaml")
if model_type == "GestureNet":
yaml_download_path = os.path.join(huggingface_pretrained_path, "gesturenet", "train_image2video_gesturenet.yaml")
# Load the config
assert(os.path.exists(yaml_download_path))
config = OmegaConf.load(yaml_download_path)
################################################ Prepare vae, unet, image_encoder Same as before #################################################################
print("Prepare the pretrained model")
accelerator = Accelerator(
gradient_accumulation_steps = config["gradient_accumulation_steps"],
mixed_precision = config["mixed_precision"],
log_with = config["report_to"],
project_config = ProjectConfiguration(project_dir=config["output_dir"], logging_dir=Path(config["output_dir"], config["logging_name"])),
)
print("device is ", accelerator.device)
feature_extractor = CLIPImageProcessor.from_pretrained(
config["pretrained_model_name_or_path"], subfolder="feature_extractor", revision=None
) # This instance has now weight, they are just seeting file
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
config["pretrained_model_name_or_path"], subfolder="image_encoder", revision=None, variant="fp16"
)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
config["pretrained_model_name_or_path"], subfolder="vae", revision=None, variant="fp16"
)
unet = UNetSpatioTemporalConditionModel.from_pretrained(
huggingface_pretrained_path,
subfolder = "unet",
low_cpu_mem_usage = True,
# variant = "fp16",
)
# For text ..............................................
tokenizer = AutoTokenizer.from_pretrained(
config["pretrained_tokenizer_name_or_path"],
subfolder = "tokenizer",
revision = None,
use_fast = False,
)
# Clip Text Encoder
text_encoder_cls = import_pretrained_text_encoder(config["pretrained_tokenizer_name_or_path"], revision=None)
text_encoder = text_encoder_cls.from_pretrained(config["pretrained_tokenizer_name_or_path"], subfolder = "text_encoder", revision = None, variant = None)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move vae + image_encoder to gpu and cast to weight_dtype
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
unet.requires_grad_(False) # Will switch back at the end
text_encoder.requires_grad_(False)
# Move to accelerator
vae.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
# For GestureNet
if model_type == "GestureNet":
unet.to(accelerator.device, dtype=weight_dtype) # There is no need to cast unet in unet training, only needed in controlnet one
# Handle the Controlnet first from UNet
gesturenet = ControlNetModel.from_pretrained(
huggingface_pretrained_path,
subfolder = "gesturenet",
low_cpu_mem_usage = True,
variant = None,
)
gesturenet.requires_grad_(False)
gesturenet.to(accelerator.device)
##############################################################################################################################################################
# Init the pipeline
pipeline = StableVideoDiffusionControlNetPipeline.from_pretrained(
config["pretrained_model_name_or_path"], # Still based on regular SVD config
vae = vae,
image_encoder = image_encoder,
unet = unet,
revision = None, # Set None directly now
torch_dtype = weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
############################## Prepare and Process the condition here ##############################
org_height, org_width, _ = ref_image.shape
ref_image_pil = Image.fromarray(ref_image)
ref_image_pil = ref_image_pil.resize((config["width"], config["height"]))
# Initial the optical flow format we want
gesture_condition_img = np.zeros((config["video_seq_length"], config["conditioning_channels"], config["height"], config["width"]), dtype=np.float32) # The last image should be empty
# Handle the selected points to the condition we want
for point_idx, point in enumerate(selected_points):
frame_idx = frame_idxs[point_idx]
horizontal, vertical = point
# Init the base image
base_img = np.zeros((org_height, org_width, 3)).astype(np.float32) # Use the original image size
base_img.fill(255)
# Draw square around the target position
dot_range = 10 # Diameter
for i in range(-1*dot_range, dot_range+1):
for j in range(-1*dot_range, dot_range+1):
dil_vertical, dil_horizontal = vertical + i, horizontal + j
if (0 <= dil_vertical and dil_vertical < base_img.shape[0]) and (0 <= dil_horizontal and dil_horizontal < base_img.shape[1]):
if point_idx == 0:
base_img[dil_vertical][dil_horizontal] = [0, 0, 255] # The first point should be red
else:
base_img[dil_vertical][dil_horizontal] = [0, 255, 0] # The second point should be green to distinguish the first point
# Dilate
if config["dilate"]:
base_img = cv2.filter2D(base_img, -1, blur_kernel)
##############################################################################################################################
### The core pipeline of processing is: Dilate -> Resize -> Range Shift -> Transpose Shape -> Store
# Resize frames Don't use negative and don't resize in [0,1]
base_img = cv2.resize(base_img, (config["width"], config["height"]), interpolation = cv2.INTER_CUBIC)
# Channel Transform and Range Shift
if config["conditioning_channels"] == 3:
# Map to [0, 1] range
base_img = base_img / 255.0
else:
raise NotImplementedError()
# ReOrganize shape
base_img = base_img.transpose(2, 0, 1) # hwc -> chw
# Write base img based on frame_idx
gesture_condition_img[frame_idx] = base_img # Only the first frame, the rest is 0 initialized
####################################################################################################
# Use the same tokenize process as the dataset preparation stage
tokenized_prompt = tokenize_captions(prompt, tokenizer, config, is_train=False).unsqueeze(0).to(accelerator.device) # Use unsqueeze to expand dim
# Call the pipeline
with torch.autocast("cuda"):
frames = pipeline(
image = ref_image_pil,
condition_img = gesture_condition_img, # numpy [0,1] range
controlnet = accelerator.unwrap_model(gesturenet),
prompt = tokenized_prompt,
use_text = config["use_text"],
text_encoder = text_encoder,
height = config["height"],
width = config["width"],
num_frames = config["video_seq_length"],
decode_chunk_size = 8,
motion_bucket_id = 200,
# controlnet_image_index = controlnet_image_index,
# coordinate_values = coordinate_values,
num_inference_steps = config["num_inference_steps"],
max_guidance_scale = config["inference_max_guidance_scale"],
fps = 7,
use_instructpix2pix = config["use_instructpix2pix"],
noise_aug_strength = config["inference_noise_aug_strength"],
controlnet_conditioning_scale = config["outer_conditioning_scale"],
inner_conditioning_scale = config["inner_conditioning_scale"],
guess_mode = config["inference_guess_mode"], # False in inference
image_guidance_scale = config["image_guidance_scale"],
).frames[0]
# Save frames
video_file_path = os.path.join(store_folder_name, "tmp.mp4")
writer = imageio.get_writer(video_file_path, fps=4)
for idx, frame in enumerate(frames):
frame.save(os.path.join(store_folder_name, str(idx)+".png"))
writer.append_data(cv2.cvtColor(cv2.imread(os.path.join(store_folder_name, str(idx)+".png")), cv2.COLOR_BGR2RGB))
writer.close()
# Cleaning process
del pipeline
torch.cuda.empty_cache()
return gr.update(value=video_file_path, width=config["width"], height=config["height"]) # Return resuly based on the need
if __name__ == '__main__':
# Gradio demo part
with gr.Blocks() as demo:
# layout definition
with gr.Row():
gr.Markdown(MARKDOWN)
# UI components for editing real images
with gr.Row(elem_classes=["container"]):
selected_points = gr.State([]) # store points
original_image = gr.State(value=None) # store original input image
with gr.Row():
with gr.Column():
gr.Markdown("""<p style="text-align: center; font-size: 30px">Click two Points</p>""")
input_image = gr.Image(label="Input Image", height=HEIGHT, width=WIDTH, interactive=False, elem_id="input_img")
# gr.Image(type="numpy", label="Click Points", height=HEIGHT, width=WIDTH, interactive=False) # for points clicking
undo_button = gr.Button("Undo point")
# Text prompt
with gr.Row():
prompt = gr.Textbox(label="Text Prompt")
with gr.Column():
gr.Markdown("""<p style="text-align: center; font-size: 30px">Results</p>""")
frames = gr.Video(value=None, label="Generate Video", show_label=True, height=HEIGHT, width=WIDTH)
with gr.Row():
run_button = gr.Button("Run")
clear_all_button = gr.Button("Clear All")
# with gr.Tab("Base Model Config"):
# with gr.Row():
# local_models_dir = 'local_pretrained_models'
# local_models_choice = \
# [os.path.join(local_models_dir,d) for d in os.listdir(local_models_dir) if os.path.isdir(os.path.join(local_models_dir,d))]
# model_path = gr.Dropdown(value="runwayml/stable-diffusion-v1-5",
# label="Diffusion Model Path",
# choices=[
# "runwayml/stable-diffusion-v1-5",
# "gsdf/Counterfeit-V2.5",
# "stablediffusionapi/anything-v5",
# "SG161222/Realistic_Vision_V2.0",
# ] + local_models_choice
# )
# vae_path = gr.Dropdown(value="default",
# label="VAE choice",
# choices=["default",
# "stabilityai/sd-vae-ft-mse"] + local_models_choice
# )
# Examples
with gr.Row(elem_classes=["container"]):
gr.Examples(
[
["__assets__/Bridge_example/Task1_v1_511/im_0.jpg", "take this to there"],
["__assets__/Bridge_example/Task2_v2_164/im_0.jpg", "put this to there"],
["__assets__/Bridge_example/Task3_v2_490/im_0.jpg", "fold this"],
["__assets__/Bridge_example/Task4_v2_119/im_0.jpg", "open this"],
# ["__assets__/0.jpg", "take this to there"],
["__assets__/91.jpg", "take this to there"],
["__assets__/156.jpg", "take this to there"],
# ["__assets__/274.jpg", "take this to there"],
["__assets__/375.jpg", "take this to there"],
# ["__assets__/551.jpg", "take this to there"],
],
[input_image, prompt, selected_points],
)
####################################### Event Definition #######################################
# Draw the points
input_image.select(
get_points,
[input_image, original_image, selected_points],
[input_image, original_image],
)
# Clean the points
undo_button.click(
undo_points,
[original_image],
[input_image, selected_points],
)
run_button.click(
gesturenet_inference,
inputs = [
# vae, unet, gesturenet, image_encoder, text_encoder, tokenizer,
original_image, prompt, selected_points,
# frame_idxs,
# config, accelerator, weight_dtype
],
outputs = [frames]
)
clear_all_button.click(
clear_all,
[],
outputs = [original_image, input_image, prompt, selected_points],
)
demo.queue().launch(share=True)
|