Spaces:
Runtime error
Runtime error
| from fastapi import FastAPI | |
| from pydantic import BaseModel | |
| from model.model import predict_pipeline | |
| from model.model import __version__ as model_version | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from transformers import TextClassificationPipeline | |
| app = FastAPI() | |
| class TextIn(BaseModel): | |
| text: str | |
| class PredictionOut(BaseModel): | |
| language: str | |
| class TopicClassificationOut(BaseModel): | |
| result: str | |
| def home(): | |
| return {"health_check": "OK", "model_version": model_version} | |
| def predict(payload: TextIn): | |
| language = predict_pipeline(payload.text) | |
| return {"language": language} | |
| def TopicClassification(payload: TextIn): | |
| model_name = 'lincoln/flaubert-mlsum-topic-classification' | |
| loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| nlp = TextClassificationPipeline(model=loaded_model, tokenizer=loaded_tokenizer) | |
| result = nlp(payload.text, truncation=True) | |
| return {"result": result} | |