Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
model_name = "meta-llama/Llama-2-7b-chat-hf"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
-
|
9 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
10 |
|
|
|
|
|
|
|
|
|
11 |
def generate_text(prompt):
|
12 |
response = generator(prompt, max_length=60, num_return_sequences=1, temperature=0.5, top_p=0.85)
|
13 |
return response[0]['generated_text']
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
from diffusers import StableDiffusionPipeline
|
4 |
+
import torch
|
5 |
|
6 |
+
# Configuraci贸n de Llama o Nous para texto
|
7 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf" # o el modelo Nous que prefieras
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
10 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
11 |
|
12 |
+
# Configuraci贸n de Stable Diffusion para im谩genes
|
13 |
+
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("cuda")
|
14 |
+
|
15 |
+
# Funci贸n de generaci贸n de texto
|
16 |
def generate_text(prompt):
|
17 |
response = generator(prompt, max_length=60, num_return_sequences=1, temperature=0.5, top_p=0.85)
|
18 |
return response[0]['generated_text']
|
19 |
|
20 |
+
# Funci贸n de generaci贸n de imagen
|
21 |
+
def generate_image(prompt):
|
22 |
+
image = pipe(prompt).images[0]
|
23 |
+
return image
|
24 |
+
|
25 |
+
# Crear la interfaz de Gradio
|
26 |
+
iface_text = gr.Interface(fn=generate_text, inputs="text", outputs="text", description="Generador de Texto con Llama/Nous")
|
27 |
+
iface_image = gr.Interface(fn=generate_image, inputs="text", outputs="image", description="Generador de Im谩genes con Stable Diffusion")
|
28 |
|
29 |
+
# Ejecutar ambas interfaces juntas
|
30 |
+
app = gr.TabbedInterface([iface_text, iface_image], ["Texto", "Imagen"])
|
31 |
+
app.launch()
|