File size: 3,445 Bytes
1575aea
 
 
 
 
 
 
 
 
 
 
8d15309
 
 
 
97d13d8
 
 
 
 
 
d5500bf
97d13d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a660a7
97d13d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5500bf
 
97d13d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
title: Mental Health Emotion Classifier
emoji: ๐Ÿง 
colorFrom: indigo
colorTo: blue
sdk: gradio
sdk_version: "4.29.0"   # (optional, can leave out if unsure)
app_file: app.py
pinned: false
---

NOTE: Running the app in the space is taking a lot of time for model inference. I suggest you to download the model and app files and run the app locally.

You can download the model from this Hugging Face Hub link: https://huggingface.co/Hrishikesh4/mental-health-classifier-longformer.

# Mental Health Sentiment Analyzer App

The Mental Health Sentiment Analyzer is an AI-powered application that analyzes user text to detect potential signs of mental health states such as depression, anxiety, and stress. The app leverages a fine-tuned Longformer model for multi-label text classification, built with Hugging Face Transformers, and provides explainable predictions with SHAP, along with concise summaries using Cohere API.

This project is deployed on Hugging Face Spaces with a Gradio-based interface.

---

## ๐Ÿš€ Features

- Multi-label classification of user text into categories: depression, anxiety, stress, neutral.
- Explainable AI: SHAP visualizations for understanding model predictions.
- Summary generation for analyzed text using Cohere API.
- User-friendly web interface built with Gradio.
- Deployable on Hugging Face Spaces.

---

## ๐Ÿ› ๏ธ Tech Stack

- **Language Model:** Fine-tuned Longformer
- **Summarization:** Cohere API
- **Frameworks:** Hugging Face Transformers, PyTorch
- **Interface:** Gradio
- **Explainability:** SHAP
- **Deployment:** Hugging Face Spaces

---

## ๐Ÿ“‚ Project Structure

```
Mental-Health-Sentiment-Analyzer/
โ”‚
โ”œโ”€โ”€ app/
โ”‚   โ”œโ”€โ”€ gradio_interface.py      # Gradio UI definition
โ”‚   โ”œโ”€โ”€ models/                  # Trained model files
โ”‚   โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ best_thresholds.json
โ”‚   โ”‚   โ””โ”€โ”€ sentiment_model.py
โ”‚   โ”œโ”€โ”€ utils/                   # Explanation and summarizer files
โ”‚   โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ shap_explainer.py
โ”‚   โ”‚   โ””โ”€โ”€ text_summarizer.py
โ”‚
โ”œโ”€โ”€ requirements.txt             # Dependencies
โ”œโ”€โ”€ app.py                       # Entry point for Hugging Face Spaces
โ”œโ”€โ”€ README.md                    # Project documentation
```

---

## Fine-tuned Model Details

You can access the fine-tuned Longformer model's at this Hugging Face Model link: https://huggingface.co/Hrishikesh4/mental-health-classifier-longformer


## ๐Ÿค Contributors

- Hrishikesh Kurapati (Lead Developer)

---

## ๐Ÿ“œ License

mit

---

## ๐Ÿ”ฎ Future Work

- Add support for more mental health categories.
- Improve explainability features.
- Expand dataset for better generalization.

---

## ๐Ÿ™ Acknowledgements

- Hugging Face for Transformers & Spaces.
- Gradio for interactive UI.

---

> โ€œThe model is designed for early detection of mental health risks and can be integrated into wellness or therapy support applications. It works by analyzing a userโ€™s voluntary text inputs โ€” such as journals, self-reflections, or chatbot interactions โ€” and identifying patterns of stress, anxiety, or depression. Depending on the userโ€™s consent settings, it can either provide self-help recommendations, notify a therapist, or in high-risk cases, alert a pre-approved emergency contact. The goal is to empower timely intervention while ensuring privacy and ethical use.โ€