Spaces:
Sleeping
Sleeping
| # Environment settings | |
| import os | |
| os.environ["HF_HOME"] = "/tmp" | |
| os.environ["TRANSFORMERS_CACHE"] = "/tmp" | |
| os.environ["TORCH_HOME"] = "/tmp" | |
| os.environ["XDG_CACHE_HOME"] = "/tmp" | |
| import io | |
| import re | |
| import math | |
| import numpy as np | |
| import scipy.io.wavfile | |
| import torch | |
| from fastapi import FastAPI, Query | |
| from fastapi.responses import StreamingResponse | |
| from pydantic import BaseModel | |
| from transformers import VitsModel, AutoTokenizer | |
| app = FastAPI() | |
| model = VitsModel.from_pretrained("Somali-tts/somali_tts_model") | |
| tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts") | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| model.eval() | |
| number_words = { | |
| 0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan", | |
| 6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban", | |
| 11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex", | |
| 14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix", | |
| 17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal", | |
| 20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton", | |
| 60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan", | |
| 100: "boqol", 1000: "kun" | |
| } | |
| shortcut_map = { | |
| "asc": "asalaamu caleykum", | |
| "wcs": "wacaleykum salaam", | |
| "fcn": "fiican", | |
| "xld": "xaaladda ka waran", | |
| "kwrn": "kawaran", | |
| "scw": "salalaahu caleyhi wa salam", | |
| "alx": "alxamdu lilaahi", | |
| "m.a": "maasha allah", | |
| "sthy": "side tahey", | |
| "sxp": "saaxiib" | |
| } | |
| country_map = { | |
| "somalia": "Soomaaliya", | |
| "ethiopia": "Itoobiya", | |
| "kenya": "Kenya", | |
| "djibouti": "Jabuuti", | |
| "sudan": "Suudaan", | |
| "Yeman": "yemaan", | |
| "uganda": "Ugaandha", | |
| "tanzania": "Tansaaniya", | |
| "egypt": "Masar", | |
| "libya": "Liibiya", | |
| "algeria": "Aljeeriya", | |
| "morocco": "Morooko", | |
| "tunisia": "Tuniisiya", | |
| "eritrea": "Eriteriya", | |
| "malawi": "Malaawi", | |
| "English": "ingiriis", | |
| "Spain": "isbeen", | |
| "Brazil": "baraasiil", | |
| "niger": "Niyjer", | |
| "Italy": "itaaliya", | |
| "united states": "Maraykanka", | |
| "china": "Shiinaha", | |
| "india": "Hindiya", | |
| "russia": "Ruushka", | |
| "Saudi Arabia": "Sucuudi Carabiya", | |
| "germany": "Jarmalka", | |
| "france": "Faransiiska", | |
| "japan": "Jabaan", | |
| "canada": "Kanada", | |
| "australia": "Australia" | |
| } | |
| def number_to_words(number): | |
| number = int(number) | |
| if number < 20: | |
| return number_words[number] | |
| elif number < 100: | |
| tens, unit = divmod(number, 10) | |
| return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "") | |
| elif number < 1000: | |
| hundreds, remainder = divmod(number, 100) | |
| part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol" | |
| if remainder: | |
| part += " iyo " + number_to_words(remainder) | |
| return part | |
| elif number < 1000000: | |
| thousands, remainder = divmod(number, 1000) | |
| words = [number_to_words(thousands) + " kun" if thousands > 1 else "kun"] | |
| if remainder: | |
| words.append("iyo " + number_to_words(remainder)) | |
| return " ".join(words) | |
| elif number < 1000000000: | |
| millions, remainder = divmod(number, 1000000) | |
| words = [number_to_words(millions) + " milyan" if millions > 1 else "milyan"] | |
| if remainder: | |
| words.append(number_to_words(remainder)) | |
| return " ".join(words) | |
| else: | |
| return str(number) | |
| def normalize_text(text): | |
| text = re.sub(r'(?i)(?<!\w)zamzam(?!\w)', 'samsam', text) | |
| def replace_shortcuts(match): | |
| word = match.group(0).lower() | |
| return shortcut_map.get(word, word) | |
| pattern = re.compile(r'\b(' + '|'.join(re.escape(k) for k in shortcut_map.keys()) + r')\b', re.IGNORECASE) | |
| text = pattern.sub(replace_shortcuts, text) | |
| def replace_countries(match): | |
| word = match.group(0).lower() | |
| return country_map.get(word, word) | |
| country_pattern = re.compile(r'\b(' + '|'.join(re.escape(k) for k in country_map.keys()) + r')\b', re.IGNORECASE) | |
| text = country_pattern.sub(replace_countries, text) | |
| text = re.sub(r'(\d{1,3})(,\d{3})+', lambda m: m.group(0).replace(",", ""), text) | |
| text = re.sub(r'\.\d+', '', text) | |
| def replace_num(match): | |
| return number_to_words(match.group()) | |
| text = re.sub(r'\d+', replace_num, text) | |
| symbol_map = { | |
| '$': 'doolar', | |
| '=': 'egwal', | |
| '+': 'balaas', | |
| '#': 'haash' | |
| } | |
| for sym, word in symbol_map.items(): | |
| text = text.replace(sym, ' ' + word + ' ') | |
| text = text.replace("KH", "qa").replace("Z", "S") | |
| text = text.replace("SH", "SHa'a").replace("DH", "Dha'a") | |
| if re.search(r'(?i)(zamzam|samsam)[\s\.,!?]*$', text.strip()): | |
| text += " m" | |
| return text | |
| def waveform_to_wav_bytes(waveform: torch.Tensor, sample_rate: int = 22050) -> bytes: | |
| np_waveform = waveform.cpu().numpy() | |
| if np_waveform.ndim == 3: | |
| np_waveform = np_waveform[0] | |
| if np_waveform.ndim == 2: | |
| np_waveform = np_waveform.mean(axis=0) | |
| np_waveform = np.clip(np_waveform, -1.0, 1.0).astype(np.float32) | |
| pcm_waveform = (np_waveform * 32767).astype(np.int16) | |
| buf = io.BytesIO() | |
| scipy.io.wavfile.write(buf, rate=sample_rate, data=pcm_waveform) | |
| buf.seek(0) | |
| return buf.read() | |
| class TextIn(BaseModel): | |
| inputs: str | |
| async def synthesize_post(data: TextIn): | |
| paragraphs = [p.strip() for p in data.inputs.split('\n') if p.strip()] | |
| sample_rate = getattr(model.config, "sampling_rate", 22050) | |
| all_waveforms = [] | |
| for paragraph in paragraphs: | |
| normalized = normalize_text(paragraph) | |
| inputs = tokenizer(normalized, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| output = model(**inputs) | |
| waveform = ( | |
| output.waveform if hasattr(output, "waveform") else | |
| output["waveform"] if isinstance(output, dict) and "waveform" in output else | |
| output[0] if isinstance(output, (tuple, list)) else | |
| None | |
| ) | |
| if waveform is None: | |
| continue | |
| all_waveforms.append(waveform) | |
| silence = torch.zeros(1, sample_rate).to(waveform.device) | |
| all_waveforms.append(silence) | |
| if not all_waveforms: | |
| return {"error": "No audio generated."} | |
| final_waveform = torch.cat(all_waveforms, dim=-1) | |
| wav_bytes = waveform_to_wav_bytes(final_waveform, sample_rate=sample_rate) | |
| return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav") | |
| async def synthesize_get(text: str = Query(..., description="Text to synthesize"), test: bool = Query(False)): | |
| if test: | |
| paragraphs = text.count("\n") + 1 | |
| duration_s = paragraphs * 6 | |
| sample_rate = 22050 | |
| t = np.linspace(0, duration_s, int(sample_rate * duration_s), endpoint=False) | |
| freq = 440 | |
| waveform = 0.5 * np.sin(2 * math.pi * freq * t).astype(np.float32) | |
| pcm_waveform = (waveform * 32767).astype(np.int16) | |
| buf = io.BytesIO() | |
| scipy.io.wavfile.write(buf, rate=sample_rate, data=pcm_waveform) | |
| buf.seek(0) | |
| return StreamingResponse(buf, media_type="audio/wav") | |
| normalized = normalize_text(text) | |
| inputs = tokenizer(normalized, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| output = model(**inputs) | |
| waveform = ( | |
| output.waveform if hasattr(output, "waveform") else | |
| output["waveform"] if isinstance(output, dict) and "waveform" in output else | |
| output[0] if isinstance(output, (tuple, list)) else | |
| None | |
| ) | |
| if waveform is None: | |
| return {"error": "Waveform not found in model output"} | |
| sample_rate = getattr(model.config, "sampling_rate", 22050) | |
| wav_bytes = waveform_to_wav_bytes(waveform, sample_rate=sample_rate) | |
| return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav") | |