IAMTFRMZA's picture
Update app.py
c0ce26b verified
raw
history blame contribute delete
4.02 kB
import gradio as gr
import os
import json
import uuid
import threading
import time
import re
from dotenv import load_dotenv
from openai import OpenAI
from realtime_transcriber import WebSocketClient, connections, WEBSOCKET_URI, WEBSOCKET_HEADERS
# ------------------ Load Secrets ------------------
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
if not OPENAI_API_KEY or not ASSISTANT_ID:
raise ValueError("Missing OPENAI_API_KEY or ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)
session_threads = {}
# ------------------ Chat Logic ------------------
def reset_session():
session_id = str(uuid.uuid4())
session_threads[session_id] = client.beta.threads.create().id
return session_id
def process_chat(message, history, session_id):
thread_id = session_threads.get(session_id)
if not thread_id:
thread_id = client.beta.threads.create().id
session_threads[session_id] = thread_id
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=message)
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
while client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id).status != "completed":
time.sleep(1)
messages = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(messages.data):
if msg.role == "assistant":
return msg.content[0].text.value
return "⚠️ Assistant did not respond."
def extract_image_url(text):
match = re.search(r'https://raw\.githubusercontent\.com/[^\s"]+\.png', text)
return match.group(0) if match else None
def handle_chat(message, history, session_id):
response = process_chat(message, history, session_id)
history.append((message, response))
image = extract_image_url(response)
return history, image
# ------------------ Voice Logic ------------------
def create_websocket_client():
client_id = str(uuid.uuid4())
connections[client_id] = WebSocketClient(WEBSOCKET_URI, WEBSOCKET_HEADERS, client_id)
threading.Thread(target=connections[client_id].run, daemon=True).start()
return client_id
def clear_transcript(client_id):
if client_id in connections:
connections[client_id].transcript = ""
return ""
def send_audio_chunk(audio, client_id):
if client_id not in connections:
return "Initializing connection..."
sr, y = audio
connections[client_id].enqueue_audio_chunk(sr, y)
return connections[client_id].transcript
# ------------------ UI ------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🧠 Document AI + πŸŽ™οΈ Voice Assistant")
session_id = gr.State(value=reset_session())
client_id = gr.State()
with gr.Row():
image_display = gr.Image(label="πŸ“‘ Extracted Document Image", show_label=True, height=360)
with gr.Column():
chatbot = gr.Chatbot(label="πŸ’¬ Document Assistant", height=360)
text_input = gr.Textbox(label="Ask about the document", placeholder="e.g. What is clause 3.2?")
send_btn = gr.Button("Send")
send_btn.click(handle_chat, inputs=[text_input, chatbot, session_id], outputs=[chatbot, image_display])
text_input.submit(handle_chat, inputs=[text_input, chatbot, session_id], outputs=[chatbot, image_display])
# Toggle Section
with gr.Accordion("🎀 Or Use Voice Instead", open=False):
with gr.Row():
transcript_box = gr.Textbox(label="Live Transcript", lines=7, interactive=False, autoscroll=True)
with gr.Row():
mic_input = gr.Audio(streaming=True)
clear_button = gr.Button("Clear Transcript")
mic_input.stream(fn=send_audio_chunk, inputs=[mic_input, client_id], outputs=transcript_box)
clear_button.click(fn=clear_transcript, inputs=[client_id], outputs=transcript_box)
demo.load(fn=create_websocket_client, outputs=client_id)
demo.launch()