Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,22 @@
|
|
1 |
-
# from flask import Flask, request, jsonify
|
2 |
-
# from sentence_transformers import CrossEncoder
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
# app = Flask(__name__)
|
7 |
-
|
8 |
-
|
9 |
-
# # Load your cross-encoder model
|
10 |
-
# model_name = "truong1301/reranker_pho_BLAI" # Replace with your actual model if different
|
11 |
-
# cross_encoder = CrossEncoder(model_name, max_length=256, num_labels=1)
|
12 |
-
|
13 |
-
# # Function to preprocess text with Vietnamese word segmentation
|
14 |
-
# def preprocess_text(text):
|
15 |
-
# if not text:
|
16 |
-
# return text
|
17 |
-
# segmented_text = rdrsegmenter.word_segment(text)
|
18 |
-
# # Join tokenized sentences into a single string
|
19 |
-
# return " ".join([" ".join(sentence) for sentence in segmented_text])
|
20 |
-
|
21 |
-
# @app.route("/rerank", methods=["POST"])
|
22 |
-
# def rerank():
|
23 |
-
# try:
|
24 |
-
# # Get JSON data from the request (query and list of documents)
|
25 |
-
# data = request.get_json()
|
26 |
-
# query = data.get("query", "")
|
27 |
-
# documents = data.get("documents", [])
|
28 |
-
|
29 |
-
# if not query or not documents:
|
30 |
-
# return jsonify({"error": "Missing query or documents"}), 400
|
31 |
-
|
32 |
-
# # Create pairs of query and documents for reranking
|
33 |
-
# query_doc_pairs = [(query, doc) for doc in documents]
|
34 |
-
|
35 |
-
# # Get reranking scores from the cross-encoder
|
36 |
-
# scores = cross_encoder.predict(query_doc_pairs).tolist()
|
37 |
-
|
38 |
-
# # Combine documents with their scores and sort
|
39 |
-
# ranked_results = sorted(
|
40 |
-
# [{"document": doc, "score": score} for doc, score in zip(documents, scores)],
|
41 |
-
# key=lambda x: x["score"],
|
42 |
-
# reverse=True
|
43 |
-
# )
|
44 |
-
|
45 |
-
# return jsonify({"results": ranked_results})
|
46 |
-
|
47 |
-
# except Exception as e:
|
48 |
-
# return jsonify({"error": str(e)}), 500
|
49 |
-
|
50 |
-
# @app.route("/", methods=["GET"])
|
51 |
-
# def health_check():
|
52 |
-
# return jsonify({"status": "Server is running"}), 200
|
53 |
-
|
54 |
-
# if __name__ == "__main__":
|
55 |
-
# app.run(host="0.0.0.0", port=7860) # Default port for Hugging Face Spaces
|
56 |
-
|
57 |
-
|
58 |
from flask import Flask, request, jsonify
|
59 |
-
from transformers import pipeline
|
60 |
from sentence_transformers import CrossEncoder
|
61 |
|
|
|
|
|
62 |
app = Flask(__name__)
|
63 |
|
64 |
-
# Load Vietnamese word segmentation pipeline
|
65 |
-
segmenter = pipeline("token-classification", model="NlpHUST/vi-word-segmentation")
|
66 |
|
67 |
# Load your cross-encoder model
|
68 |
model_name = "truong1301/reranker_pho_BLAI" # Replace with your actual model if different
|
69 |
cross_encoder = CrossEncoder(model_name, max_length=256, num_labels=1)
|
70 |
|
71 |
-
# Function to preprocess text
|
72 |
def preprocess_text(text):
|
73 |
if not text:
|
74 |
return text
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
for e in ner_results:
|
80 |
-
if "##" in e["word"]:
|
81 |
-
segmented_text += e["word"].replace("##", "")
|
82 |
-
elif e["entity"] == "I":
|
83 |
-
segmented_text += "_" + e["word"]
|
84 |
-
else:
|
85 |
-
segmented_text += " " + e["word"]
|
86 |
-
|
87 |
-
return segmented_text.strip()
|
88 |
|
89 |
@app.route("/rerank", methods=["POST"])
|
90 |
def rerank():
|
@@ -97,12 +29,8 @@ def rerank():
|
|
97 |
if not query or not documents:
|
98 |
return jsonify({"error": "Missing query or documents"}), 400
|
99 |
|
100 |
-
# Apply Vietnamese word segmentation preprocessing
|
101 |
-
segmented_query = preprocess_text(query)
|
102 |
-
segmented_documents = [preprocess_text(doc) for doc in documents]
|
103 |
-
|
104 |
# Create pairs of query and documents for reranking
|
105 |
-
query_doc_pairs = [(
|
106 |
|
107 |
# Get reranking scores from the cross-encoder
|
108 |
scores = cross_encoder.predict(query_doc_pairs).tolist()
|
@@ -127,3 +55,75 @@ if __name__ == "__main__":
|
|
127 |
app.run(host="0.0.0.0", port=7860) # Default port for Hugging Face Spaces
|
128 |
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from flask import Flask, request, jsonify
|
|
|
2 |
from sentence_transformers import CrossEncoder
|
3 |
|
4 |
+
|
5 |
+
|
6 |
app = Flask(__name__)
|
7 |
|
|
|
|
|
8 |
|
9 |
# Load your cross-encoder model
|
10 |
model_name = "truong1301/reranker_pho_BLAI" # Replace with your actual model if different
|
11 |
cross_encoder = CrossEncoder(model_name, max_length=256, num_labels=1)
|
12 |
|
13 |
+
# Function to preprocess text with Vietnamese word segmentation
|
14 |
def preprocess_text(text):
|
15 |
if not text:
|
16 |
return text
|
17 |
+
segmented_text = rdrsegmenter.word_segment(text)
|
18 |
+
# Join tokenized sentences into a single string
|
19 |
+
return " ".join([" ".join(sentence) for sentence in segmented_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
@app.route("/rerank", methods=["POST"])
|
22 |
def rerank():
|
|
|
29 |
if not query or not documents:
|
30 |
return jsonify({"error": "Missing query or documents"}), 400
|
31 |
|
|
|
|
|
|
|
|
|
32 |
# Create pairs of query and documents for reranking
|
33 |
+
query_doc_pairs = [(query, doc) for doc in documents]
|
34 |
|
35 |
# Get reranking scores from the cross-encoder
|
36 |
scores = cross_encoder.predict(query_doc_pairs).tolist()
|
|
|
55 |
app.run(host="0.0.0.0", port=7860) # Default port for Hugging Face Spaces
|
56 |
|
57 |
|
58 |
+
# from flask import Flask, request, jsonify
|
59 |
+
# from transformers import pipeline
|
60 |
+
# from sentence_transformers import CrossEncoder
|
61 |
+
|
62 |
+
# app = Flask(__name__)
|
63 |
+
|
64 |
+
# # Load Vietnamese word segmentation pipeline
|
65 |
+
# segmenter = pipeline("token-classification", model="NlpHUST/vi-word-segmentation")
|
66 |
+
|
67 |
+
# # Load your cross-encoder model
|
68 |
+
# model_name = "truong1301/reranker_pho_BLAI" # Replace with your actual model if different
|
69 |
+
# cross_encoder = CrossEncoder(model_name, max_length=256, num_labels=1)
|
70 |
+
|
71 |
+
# # Function to preprocess text using Vietnamese word segmentation
|
72 |
+
# def preprocess_text(text):
|
73 |
+
# if not text:
|
74 |
+
# return text
|
75 |
+
|
76 |
+
# ner_results = segmenter(text)
|
77 |
+
# segmented_text = ""
|
78 |
+
|
79 |
+
# for e in ner_results:
|
80 |
+
# if "##" in e["word"]:
|
81 |
+
# segmented_text += e["word"].replace("##", "")
|
82 |
+
# elif e["entity"] == "I":
|
83 |
+
# segmented_text += "_" + e["word"]
|
84 |
+
# else:
|
85 |
+
# segmented_text += " " + e["word"]
|
86 |
+
|
87 |
+
# return segmented_text.strip()
|
88 |
+
|
89 |
+
# @app.route("/rerank", methods=["POST"])
|
90 |
+
# def rerank():
|
91 |
+
# try:
|
92 |
+
# # Get JSON data from the request (query and list of documents)
|
93 |
+
# data = request.get_json()
|
94 |
+
# query = data.get("query", "")
|
95 |
+
# documents = data.get("documents", [])
|
96 |
+
|
97 |
+
# if not query or not documents:
|
98 |
+
# return jsonify({"error": "Missing query or documents"}), 400
|
99 |
+
|
100 |
+
# # Apply Vietnamese word segmentation preprocessing
|
101 |
+
# segmented_query = preprocess_text(query)
|
102 |
+
# segmented_documents = [preprocess_text(doc) for doc in documents]
|
103 |
+
|
104 |
+
# # Create pairs of query and documents for reranking
|
105 |
+
# query_doc_pairs = [(segmented_query, doc) for doc in segmented_documents]
|
106 |
+
|
107 |
+
# # Get reranking scores from the cross-encoder
|
108 |
+
# scores = cross_encoder.predict(query_doc_pairs).tolist()
|
109 |
+
|
110 |
+
# # Combine documents with their scores and sort
|
111 |
+
# ranked_results = sorted(
|
112 |
+
# [{"document": doc, "score": score} for doc, score in zip(documents, scores)],
|
113 |
+
# key=lambda x: x["score"],
|
114 |
+
# reverse=True
|
115 |
+
# )
|
116 |
+
|
117 |
+
# return jsonify({"results": ranked_results})
|
118 |
+
|
119 |
+
# except Exception as e:
|
120 |
+
# return jsonify({"error": str(e)}), 500
|
121 |
+
|
122 |
+
# @app.route("/", methods=["GET"])
|
123 |
+
# def health_check():
|
124 |
+
# return jsonify({"status": "Server is running"}), 200
|
125 |
+
|
126 |
+
# if __name__ == "__main__":
|
127 |
+
# app.run(host="0.0.0.0", port=7860) # Default port for Hugging Face Spaces
|
128 |
+
|
129 |
+
|