Spaces:
Sleeping
Sleeping
File size: 15,421 Bytes
7b1f23f ccb5f9c 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f ccb5f9c 7b1f23f ccb5f9c 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f 8af136f 7b1f23f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
from datetime import datetime, timedelta
import time
import gradio as gr
import numpy as np
from llama_index.core import VectorStoreIndex, StorageContext, Settings
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.core.prompts import PromptTemplate
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.together import TogetherLLM
from qdrant_client import QdrantClient
from sentence_transformers import CrossEncoder
from typing import Generator, Iterable, Tuple, Any
# === Config ===
QDRANT_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.9Pj8v4ACpX3m5U3SZUrG_jzrjGF-T41J5icZ6EPMxnc"
QDRANT_URL = "https://d36718f0-be68-4040-b276-f1f39bc1aeb9.us-east4-0.gcp.cloud.qdrant.io"
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
AVAILABLE_COLLECTIONS = ["ImageOnline", "tezjet-site", "anish-pharma"]
index_cache = {}
active_state = {"collection": None, "query_engine": None}
# === Normalized Embedding Wrapper ===
def normalize_vector(vec):
vec = np.array(vec)
return vec / np.linalg.norm(vec)
class NormalizedEmbedding(HuggingFaceEmbedding):
def get_text_embedding(self, text: str):
vec = super().get_text_embedding(text)
return normalize_vector(vec)
def get_query_embedding(self, query: str):
vec = super().get_query_embedding(query)
return normalize_vector(vec)
embed_model = NormalizedEmbedding(model_name="BAAI/bge-base-en-v1.5")
# === LLM (kept for compatibility; streaming uses Together SDK directly) ===
llm = TogetherLLM(
model="meta-llama/Llama-3-8b-chat-hf",
api_key="a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6",
temperature=0.3,
max_tokens=1024,
top_p=0.7
)
Settings.embed_model = embed_model
Settings.llm = llm
# === Cross-Encoder for Reranking ===
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
# === Prompt Template ===
custom_prompt = PromptTemplate(
"You are an expert assistant for ImageOnline Pvt Ltd.\n"
"Answer the user's query using relevant information from the context below.\n\n"
"Context:\n{context_str}\n\n"
"Query: {query_str}\n\n"
)
# === Load Index ===
def load_index_for_collection(collection_name: str) -> VectorStoreIndex:
vector_store = QdrantVectorStore(
client=qdrant_client,
collection_name=collection_name,
enable_hnsw=True
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
return VectorStoreIndex.from_vector_store(vector_store=vector_store, storage_context=storage_context)
# === Reference Renderer ===
def get_clickable_references_from_response(source_nodes, max_refs=2):
seen = set()
links = []
for node in source_nodes:
metadata = node.node.metadata
section = metadata.get("section") or metadata.get("title") or "Unknown"
source = metadata.get("source") or "Unknown"
key = (section, source)
if key not in seen:
seen.add(key)
if source.startswith("http"):
links.append(f"- [{section}]({source})")
else:
links.append(f"- {section}: {source}")
if len(links) >= max_refs:
break
return links
# === Safe Streaming Adapter for Together API (True Streaming) ===
# Requires: pip install together
from together import Together
def _extract_event_text(event: Any) -> str:
"""
Safely extract the streamed text delta from an event returned by the Together SDK.
Supports dict-like and object-like events.
Returns empty string if nothing found.
"""
try:
# Try object attribute access
choices = getattr(event, "choices", None)
if choices:
# event.choices[0].delta could be object-like
first = choices[0]
delta = getattr(first, "delta", None)
if delta:
text = getattr(delta, "content", None)
if text:
return text
# sometimes content is directly in choice
text = getattr(first, "text", None)
if text:
return text
except Exception:
pass
# Try dict-like access
try:
if isinstance(event, dict):
choices = event.get("choices")
if choices and len(choices) > 0:
first = choices[0]
# delta may be nested
delta = first.get("delta") if isinstance(first, dict) else None
if isinstance(delta, dict):
return delta.get("content", "") or delta.get("text", "") or ""
# fallback to message/content
message = first.get("message") or {}
if isinstance(message, dict):
return message.get("content", "") or ""
return first.get("text", "") or ""
except Exception:
pass
return ""
def _extract_response_text(resp: Any) -> str:
"""
Safely extract full response text from a non-streaming response object/dict from Together SDK.
"""
try:
# object-like
choices = getattr(resp, "choices", None)
if choices and len(choices) > 0:
first = choices[0]
# message may be attribute or dict
message = getattr(first, "message", None)
if message:
# message.content may be attribute
content = getattr(message, "content", None)
if content:
return content
# dict
if isinstance(message, dict):
return message.get("content", "") or ""
# fallback to text on choice
text = getattr(first, "text", None)
if text:
return text
except Exception:
pass
# dict-like
try:
if isinstance(resp, dict):
choices = resp.get("choices", [])
if choices:
first = choices[0]
message = first.get("message") or {}
if isinstance(message, dict):
return message.get("content", "") or ""
return first.get("text", "") or ""
except Exception:
pass
# final fallback
return str(resp)
class StreamingLLMAdapter:
def __init__(self, api_key: str, model: str, temperature: float = 0.3, top_p: float = 0.7, chunk_size: int = 64):
self.client = Together(api_key=api_key)
self.model = model
self.temperature = temperature
self.top_p = top_p
self.chunk_size = chunk_size
def stream_complete(self, prompt: str, max_tokens: int = 1024, **kwargs) -> Generator[str, None, None]:
"""
Use Together's native streaming API to yield tokens in real time.
Falls back to non-streamed response if streaming isn't available or errors.
"""
try:
# the Together SDK exposes an iterator when stream=True
events = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=self.temperature,
top_p=self.top_p,
stream=True
)
for event in events:
# robust extraction (handles dicts or objects)
text_piece = _extract_event_text(event)
if text_piece:
yield text_piece
except Exception:
# fallback to synchronous non-streaming
yield from self._sync_fallback(prompt, max_tokens, **kwargs)
def _sync_fallback(self, prompt: str, max_tokens: int = 1024, **kwargs) -> Generator[str, None, None]:
"""Call Together API without streaming and yield chunks."""
try:
resp = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=self.temperature,
top_p=self.top_p
)
text = _extract_response_text(resp)
except Exception as e:
text = f"[Error from LLM: {e}]"
for i in range(0, len(text), self.chunk_size):
yield text[i:i + self.chunk_size]
# instantiate streaming adapter (keep your API key here)
streaming_llm = StreamingLLMAdapter(
api_key="a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6",
model="meta-llama/Llama-3-8b-chat-hf",
temperature=0.3,
top_p=0.7
)
# === Query Chain with Reranking ===
def rag_chain_prompt_and_sources(query: str, top_k: int = 3):
"""
Returns (prompt_text, top_nodes) using the existing retrieval + reranking flow.
We separate building prompt from calling the LLM so we can stream the final call.
"""
if not active_state["query_engine"]:
return None, None, "⚠️ Please select a website collection first."
raw_nodes = active_state["query_engine"].retrieve(query)
# Step 2: Rerank
pairs = [(query, n.node.get_content()) for n in raw_nodes]
scores = reranker.predict(pairs)
scored_nodes = sorted(zip(raw_nodes, scores), key=lambda x: x[1], reverse=True)
top_nodes = [n for n, _ in scored_nodes[:top_k]]
# Step 3: Compose prompt
context = "\n\n".join([n.node.get_content() for n in top_nodes])
prompt = custom_prompt.format(context_str=context, query_str=query)
return prompt, top_nodes, None
# === Collection Switch ===
def handle_collection_change(selected):
now = datetime.utcnow()
cached = index_cache.get(selected)
if cached:
query_engine, ts = cached
if now - ts < timedelta(hours=1):
active_state["collection"] = selected
active_state["query_engine"] = query_engine
return f"✅ Now chatting with: `{selected}`", [], []
index = load_index_for_collection(selected)
query_engine = index.as_query_engine(similarity_top_k=10, vector_store_query_mode="default")
index_cache[selected] = (query_engine, now)
active_state["collection"] = selected
active_state["query_engine"] = query_engine
return f"✅ Now chatting with: `{selected}`", [], []
# === Streaming Chat Handler ===
def chat_interface_stream(message: str, history: list) -> Generator[Tuple[list, list, str], None, None]:
"""
Yields tuples of (chatbot_history, state, textbox_value) so Gradio gets
the right number of outputs for each yield when using streaming.
"""
history = history or []
message = (message or "").strip()
if not message:
# still return all outputs
yield history, history, ""
return
timestamp_user = datetime.now().strftime("%H:%M:%S")
user_msg = f"🧑 **You**\n{message}\n\n⏱️ {timestamp_user}"
# append placeholder bot typing state
history.append((user_msg, "⏳ _Bot is typing..._"))
# initial update (user message + typing)
yield history, history, ""
prompt, top_nodes, err = rag_chain_prompt_and_sources(message)
if err:
history[-1] = (user_msg, f"🤖 **Bot**\n{err}")
yield history, history, ""
return
assistant_text = ""
chunk_count = 0
flush_every_n = 3 # flush every 3 small deltas (tweak if you want more frequent updates)
try:
# stream from Together
for chunk in streaming_llm.stream_complete(prompt, max_tokens=1024):
assistant_text += chunk
chunk_count += 1
# periodically flush partial output to UI
if chunk_count % flush_every_n == 0:
history[-1] = (user_msg, f"🤖 **Bot**\n{assistant_text}")
yield history, history, ""
# after streaming completes, append any leftover partial (if not flushed recently)
history[-1] = (user_msg, f"🤖 **Bot**\n{assistant_text}")
except Exception as e:
# on error, show error message
history[-1] = (user_msg, f"🤖 **Bot**\n⚠️ {str(e)}")
yield history, history, ""
return
# Add references at the end
references = get_clickable_references_from_response(top_nodes)
if references:
assistant_text += "\n\n📚 **Reference(s):**\n" + "\n".join(references)
timestamp_bot = datetime.now().strftime("%H:%M:%S")
history[-1] = (user_msg, f"🤖 **Bot**\n{assistant_text.strip()}\n\n⏱️ {timestamp_bot}")
# final yield with textbox cleared
yield history, history, ""
# Fallback synchronous chat (kept for compatibility if you want non-streaming)
def chat_interface_sync(message, history):
history = history or []
message = message.strip()
if not message:
raise ValueError("Please enter a valid question.")
timestamp_user = datetime.now().strftime("%H:%M:%S")
user_msg = f"🧑 **You**\n{message}\n\n⏱️ {timestamp_user}"
bot_msg = "⏳ _Bot is typing..._"
history.append((user_msg, bot_msg))
try:
time.sleep(0.5)
prompt, top_nodes, err = rag_chain_prompt_and_sources(message)
if err:
timestamp_bot = datetime.now().strftime("%H:%M:%S")
history[-1] = (user_msg, f"🤖 **Bot**\n{err}\n\n⏱️ {timestamp_bot}")
return history, history, ""
resp = llm.complete(prompt).text
references = get_clickable_references_from_response(top_nodes)
if references:
resp += "\n\n📚 **Reference(s):**\n" + "\n".join(references)
timestamp_bot = datetime.now().strftime("%H:%M:%S")
bot_msg = f"🤖 **Bot**\n{resp.strip()}\n\n⏱️ {timestamp_bot}"
history[-1] = (user_msg, bot_msg)
except Exception as e:
timestamp_bot = datetime.now().strftime("%H:%M:%S")
error_msg = f"🤖 **Bot**\n⚠️ {str(e)}\n\n⏱️ {timestamp_bot}"
history[-1] = (user_msg, error_msg)
return history, history, ""
# === Gradio UI ===
def launch_gradio():
with gr.Blocks() as demo:
gr.Markdown("# 💬 Demo IOPL Multi-Website Chatbot")
gr.Markdown("Choose a website you want to chat with.")
with gr.Row():
collection_dropdown = gr.Dropdown(choices=AVAILABLE_COLLECTIONS, label="Select Website to chat")
load_button = gr.Button("Load Website")
collection_status = gr.Markdown("")
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row(equal_height=True):
msg = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=9)
send_btn = gr.Button("🚀 Send", scale=1)
load_button.click(
fn=handle_collection_change,
inputs=collection_dropdown,
outputs=[collection_status, chatbot, state]
)
# Use the streaming generator for submit/click so Gradio receives yields
msg.submit(chat_interface_stream, inputs=[msg, state], outputs=[chatbot, state, msg])
send_btn.click(chat_interface_stream, inputs=[msg, state], outputs=[chatbot, state, msg])
with gr.Row():
clear_btn = gr.Button("🧹 Clear Chat")
clear_btn.click(fn=lambda: ([], []), outputs=[chatbot, state])
return demo
demo = launch_gradio()
demo.launch() |