File size: 13,717 Bytes
88d43e1
 
74bd715
88d43e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74bd715
 
88d43e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74bd715
 
88d43e1
74bd715
 
88d43e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74bd715
88d43e1
 
 
 
 
 
 
 
 
 
 
 
74bd715
88d43e1
 
 
74bd715
88d43e1
 
 
58ebc0c
88d43e1
 
74bd715
88d43e1
 
 
58ebc0c
88d43e1
 
58ebc0c
 
 
74bd715
58ebc0c
88d43e1
 
 
 
 
 
 
 
74bd715
88d43e1
58ebc0c
 
88d43e1
 
74bd715
58ebc0c
88d43e1
58ebc0c
 
88d43e1
 
 
74bd715
 
88d43e1
 
 
 
 
 
 
58ebc0c
74bd715
 
58ebc0c
88d43e1
 
 
 
 
 
 
 
 
58ebc0c
88d43e1
 
58ebc0c
74bd715
 
 
58ebc0c
74bd715
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from datetime import datetime, timedelta
import time
import gradio as gr
import numpy as np
from llama_index.core import VectorStoreIndex, StorageContext, Settings
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.core.prompts import PromptTemplate
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.together import TogetherLLM
from qdrant_client import QdrantClient
from sentence_transformers import CrossEncoder
from typing import Generator, Iterable, Tuple, Any

# === Config ===
MAX_OUTPUT_TOKENS = 300  # hard cap for concise answers
QDRANT_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.9Pj8v4ACpX3m5U3SZUrG_jzrjGF-T41J5icZ6EPMxnc"
QDRANT_URL = "https://d36718f0-be68-4040-b276-f1f39bc1aeb9.us-east4-0.gcp.cloud.qdrant.io"

qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
AVAILABLE_COLLECTIONS = ["ImageOnline", "tezjet-site", "anish-pharma"]
index_cache = {}
active_state = {"collection": None, "query_engine": None}

# === Normalized Embedding Wrapper ===
def normalize_vector(vec):
    vec = np.array(vec)
    return vec / np.linalg.norm(vec)

class NormalizedEmbedding(HuggingFaceEmbedding):
    def get_text_embedding(self, text: str):
        vec = super().get_text_embedding(text)
        return normalize_vector(vec)

    def get_query_embedding(self, query: str):
        vec = super().get_query_embedding(query)
        return normalize_vector(vec)

embed_model = NormalizedEmbedding(model_name="BAAI/bge-base-en-v1.5")

# === LLM (kept for compatibility; streaming uses Together SDK directly) ===
llm = TogetherLLM(
    model="meta-llama/Llama-3-8b-chat-hf",
    api_key="a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6",
    temperature=0.3,
    max_tokens=MAX_OUTPUT_TOKENS,
    top_p=0.7
)
Settings.embed_model = embed_model
Settings.llm = llm

# === Cross-Encoder for Reranking ===
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")

# === Prompt Template (Optimized for Conciseness & Token Limit) ===
custom_prompt = PromptTemplate(
    "You are an expert assistant for ImageOnline Pvt Ltd.\n"
    "Instructions:\n"
    "- Be concise, factual, and to the point.\n"
    "- Use bullet points where possible.\n"
    "- Do not repeat previous answers unless asked.\n"
    "- Stop once the question is addressed.\n"
    "- If user may need more detail, invite follow-up questions.\n"
    f"- Keep the answer within {MAX_OUTPUT_TOKENS} tokens.\n\n"
    "Context (summarize if long):\n{context_str}\n\n"
    "Query: {query_str}\n\n"
    "Answer:\n"
)

# === Load Index ===
def load_index_for_collection(collection_name: str) -> VectorStoreIndex:
    vector_store = QdrantVectorStore(
        client=qdrant_client,
        collection_name=collection_name,
        enable_hnsw=True
    )
    storage_context = StorageContext.from_defaults(vector_store=vector_store)
    return VectorStoreIndex.from_vector_store(vector_store=vector_store, storage_context=storage_context)

# === Reference Renderer ===
def get_clickable_references_from_response(source_nodes, max_refs=2):
    seen = set()
    links = []
    for node in source_nodes:
        metadata = node.node.metadata
        section = metadata.get("section") or metadata.get("title") or "Unknown"
        source = metadata.get("source") or "Unknown"
        key = (section, source)
        if key not in seen:
            seen.add(key)
            if source.startswith("http"):
                links.append(f"- [{section}]({source})")
            else:
                links.append(f"- {section}: {source}")
        if len(links) >= max_refs:
            break
    return links

# === Safe Streaming Adapter for Together API (True Streaming) ===
from together import Together

def _extract_event_text(event: Any) -> str:
    try:
        choices = getattr(event, "choices", None)
        if choices:
            first = choices[0]
            delta = getattr(first, "delta", None)
            if delta:
                text = getattr(delta, "content", None)
                if text:
                    return text
            text = getattr(first, "text", None)
            if text:
                return text
    except Exception:
        pass
    try:
        if isinstance(event, dict):
            choices = event.get("choices")
            if choices and len(choices) > 0:
                first = choices[0]
                delta = first.get("delta") if isinstance(first, dict) else None
                if isinstance(delta, dict):
                    return delta.get("content", "") or delta.get("text", "") or ""
                message = first.get("message") or {}
                if isinstance(message, dict):
                    return message.get("content", "") or ""
                return first.get("text", "") or ""
    except Exception:
        pass
    return ""

def _extract_response_text(resp: Any) -> str:
    try:
        choices = getattr(resp, "choices", None)
        if choices and len(choices) > 0:
            first = choices[0]
            message = getattr(first, "message", None)
            if message:
                content = getattr(message, "content", None)
                if content:
                    return content
                if isinstance(message, dict):
                    return message.get("content", "") or ""
            text = getattr(first, "text", None)
            if text:
                return text
    except Exception:
        pass
    try:
        if isinstance(resp, dict):
            choices = resp.get("choices", [])
            if choices:
                first = choices[0]
                message = first.get("message") or {}
                if isinstance(message, dict):
                    return message.get("content", "") or ""
                return first.get("text", "") or ""
    except Exception:
        pass
    return str(resp)

class StreamingLLMAdapter:
    def __init__(self, api_key: str, model: str, temperature: float = 0.3, top_p: float = 0.7, chunk_size: int = 64):
        self.client = Together(api_key=api_key)
        self.model = model
        self.temperature = temperature
        self.top_p = top_p
        self.chunk_size = chunk_size

    def stream_complete(self, prompt: str, max_tokens: int = MAX_OUTPUT_TOKENS, **kwargs) -> Generator[str, None, None]:
        try:
            events = self.client.chat.completions.create(
                model=self.model,
                messages=[{"role": "user", "content": prompt}],
                max_tokens=max_tokens,
                temperature=self.temperature,
                top_p=self.top_p,
                stream=True
            )
            for event in events:
                text_piece = _extract_event_text(event)
                if text_piece:
                    yield text_piece
        except Exception:
            yield from self._sync_fallback(prompt, max_tokens, **kwargs)

    def _sync_fallback(self, prompt: str, max_tokens: int = MAX_OUTPUT_TOKENS, **kwargs) -> Generator[str, None, None]:
        try:
            resp = self.client.chat.completions.create(
                model=self.model,
                messages=[{"role": "user", "content": prompt}],
                max_tokens=max_tokens,
                temperature=self.temperature,
                top_p=self.top_p
            )
            text = _extract_response_text(resp)
        except Exception as e:
            text = f"[Error from LLM: {e}]"
        for i in range(0, len(text), self.chunk_size):
            yield text[i:i + self.chunk_size]

streaming_llm = StreamingLLMAdapter(
    api_key="a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6",
    model="meta-llama/Llama-3-8b-chat-hf",
    temperature=0.3,
    top_p=0.7
)

# === Query Chain with Reranking ===
def rag_chain_prompt_and_sources(query: str, top_k: int = 3):
    if not active_state["query_engine"]:
        return None, None, "⚠️ Please select a website collection first."

    raw_nodes = active_state["query_engine"].retrieve(query)

    pairs = [(query, n.node.get_content()) for n in raw_nodes]
    scores = reranker.predict(pairs)
    scored_nodes = sorted(zip(raw_nodes, scores), key=lambda x: x[1], reverse=True)
    top_nodes = [n for n, _ in scored_nodes[:top_k]]

    # Truncate context if too large to save tokens
    context = "\n\n".join([n.node.get_content() for n in top_nodes])
    if len(context) > 4000:
        context = context[:4000] + "...\n[Context truncated for brevity]"

    prompt = custom_prompt.format(context_str=context, query_str=query)
    return prompt, top_nodes, None

# === Collection Switch ===
def handle_collection_change(selected):
    now = datetime.utcnow()
    cached = index_cache.get(selected)
    if cached:
        query_engine, ts = cached
        if now - ts < timedelta(hours=1):
            active_state["collection"] = selected
            active_state["query_engine"] = query_engine
            return f"✅ Now chatting with: `{selected}`", [], []

    index = load_index_for_collection(selected)
    query_engine = index.as_query_engine(similarity_top_k=10, vector_store_query_mode="default")
    index_cache[selected] = (query_engine, now)
    active_state["collection"] = selected
    active_state["query_engine"] = query_engine
    return f"✅ Now chatting with: `{selected}`", [], []

# === Streaming Chat Handler ===
def chat_interface_stream(message: str, history: list) -> Generator[Tuple[list, list, str], None, None]:
    history = history or []
    message = (message or "").strip()
    if not message:
        yield history, history, ""
        return

    timestamp_user = datetime.now().strftime("%H:%M:%S")
    user_msg = f"🧑 **You**\n{message}\n\n⏱️ {timestamp_user}"
    history.append((user_msg, "⏳ _Bot is typing..._"))
    yield history, history, ""

    prompt, top_nodes, err = rag_chain_prompt_and_sources(message)
    if err:
        history[-1] = (user_msg, f"🤖 **Bot**\n{err}")
        yield history, history, ""
        return

    assistant_text = ""
    chunk_count = 0
    flush_every_n = 3

    try:
        for chunk in streaming_llm.stream_complete(prompt, max_tokens=MAX_OUTPUT_TOKENS):
            assistant_text += chunk
            chunk_count += 1
            if chunk_count % flush_every_n == 0:
                history[-1] = (user_msg, f"🤖 **Bot**\n{assistant_text}")
                yield history, history, ""
        history[-1] = (user_msg, f"🤖 **Bot**\n{assistant_text}")
    except Exception as e:
        history[-1] = (user_msg, f"🤖 **Bot**\n⚠️ {str(e)}")
        yield history, history, ""
        return

    references = get_clickable_references_from_response(top_nodes)
    if references:
        assistant_text += "\n\n📚 **Reference(s):**\n" + "\n".join(references)

    timestamp_bot = datetime.now().strftime("%H:%M:%S")
    history[-1] = (user_msg, f"🤖 **Bot**\n{assistant_text.strip()}\n\n⏱️ {timestamp_bot}")
    yield history, history, ""

# Fallback synchronous chat
def chat_interface_sync(message, history):
    history = history or []
    message = message.strip()
    if not message:
        raise ValueError("Please enter a valid question.")

    timestamp_user = datetime.now().strftime("%H:%M:%S")
    user_msg = f"🧑 **You**\n{message}\n\n⏱️ {timestamp_user}"
    bot_msg = "⏳ _Bot is typing..._"
    history.append((user_msg, bot_msg))

    try:
        time.sleep(0.5)
        prompt, top_nodes, err = rag_chain_prompt_and_sources(message)
        if err:
            timestamp_bot = datetime.now().strftime("%H:%M:%S")
            history[-1] = (user_msg, f"🤖 **Bot**\n{err}\n\n⏱️ {timestamp_bot}")
            return history, history, ""

        resp = llm.complete(prompt, max_tokens=MAX_OUTPUT_TOKENS).text
        references = get_clickable_references_from_response(top_nodes)
        if references:
            resp += "\n\n📚 **Reference(s):**\n" + "\n".join(references)

        timestamp_bot = datetime.now().strftime("%H:%M:%S")
        bot_msg = f"🤖 **Bot**\n{resp.strip()}\n\n⏱️ {timestamp_bot}"
        history[-1] = (user_msg, bot_msg)
    except Exception as e:
        timestamp_bot = datetime.now().strftime("%H:%M:%S")
        error_msg = f"🤖 **Bot**\n⚠️ {str(e)}\n\n⏱️ {timestamp_bot}"
        history[-1] = (user_msg, error_msg)

    return history, history, ""

# === Gradio UI ===
def launch_gradio():
    with gr.Blocks() as demo:
        gr.Markdown("# 💬 Demo IOPL Multi-Website Chatbot")
        gr.Markdown("Choose a website to chat with.")

        with gr.Row():
            collection_dropdown = gr.Dropdown(choices=AVAILABLE_COLLECTIONS, label="Select Website to chat")
            load_button = gr.Button("Load Website")
        collection_status = gr.Markdown("")

        chatbot = gr.Chatbot()
        state = gr.State([])

        with gr.Row(equal_height=True):
            msg = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=9)
            send_btn = gr.Button("🚀 Send", scale=1)

        load_button.click(
            fn=handle_collection_change,
            inputs=collection_dropdown,
            outputs=[collection_status, chatbot, state]
        )

        msg.submit(chat_interface_stream, inputs=[msg, state], outputs=[chatbot, state, msg])
        send_btn.click(chat_interface_stream, inputs=[msg, state], outputs=[chatbot, state, msg])

        with gr.Row():
            clear_btn = gr.Button("🧹 Clear Chat")
            clear_btn.click(fn=lambda: ([], []), outputs=[chatbot, state])

    return demo

demo = launch_gradio()
demo.launch()