File size: 4,880 Bytes
9d9952b
 
0872833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9952b
0872833
9d9952b
 
0872833
9d9952b
 
0872833
 
 
 
 
 
 
 
 
9d9952b
 
0872833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9952b
 
0872833
 
 
 
 
 
 
 
 
 
9d9952b
0872833
 
 
 
 
 
 
 
9d9952b
0872833
 
 
 
 
9d9952b
0872833
9d9952b
0872833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9952b
0872833
9d9952b
 
 
 
0872833
 
 
 
 
 
 
9d9952b
0872833
 
9d9952b
 
 
 
 
 
 
0872833
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# app.py

from llama_index.core import VectorStoreIndex, StorageContext, ServiceContext, Document
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.together import TogetherLLM
from llama_index.core import Settings
from qdrant_client import QdrantClient

# === Qdrant Config ===
QDRANT_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.9Pj8v4ACpX3m5U3SZUrG_jzrjGF-T41J5icZ6EPMxnc"
QDRANT_URL = "https://d36718f0-be68-4040-b276-f1f39bc1aeb9.us-east4-0.gcp.cloud.qdrant.io"
COLLECTION_NAME = "demo-chatbot"

# === Embedding & LLM Setup ===
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")

llm = TogetherLLM(
    model="meta-llama/Llama-3-8b-chat-hf",
    api_key="a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6",
    temperature=0.3,
    max_tokens=1024,
    top_p=0.7
)

Settings.llm = llm
Settings.embed_model = embed_model

# === Qdrant Integration ===
qdrant_client = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)

vector_store = QdrantVectorStore(
    client=qdrant_client,
    collection_name=COLLECTION_NAME
)

# === Build Index ===
index = VectorStoreIndex.from_vector_store(vector_store)
query_engine = index.as_query_engine(similarity_top_k=5)

# === Enhanced RAG Chain with References ===
def rag_chain(query: str, include_sources: bool = True) -> str:
    response = query_engine.query(query)
    response_text = str(response)

    if include_sources:
        references = get_clickable_references_from_response(response)
        if references:
            response_text += "\n\n🔗 **Sources:**\n" + "\n".join(references)

    return response_text

# === Clickable Reference Links (top-2 from response nodes) ===
def get_clickable_references_from_response(response, max_refs: int = 2):
    seen = set()
    links = []
    for node in response.source_nodes:
        metadata = node.node.metadata
        section = metadata.get("section", "Unknown")
        source = metadata.get("source", "Unknown")
        key = (section, source)
        if key not in seen:
            seen.add(key)
            if source.startswith("http"):
                links.append(f"- [{section}]({source})")
            else:
                links.append(f"- {section}: {source}")
        if len(links) >= max_refs:
            break
    return links

from datetime import datetime
import time
import gradio as gr

# Chat handler
def chat_interface(message, history):
    history = history or []

    message = message.strip()
    if not message:
        raise ValueError("Please enter a valid question.")

    timestamp_user = datetime.now().strftime("%H:%M:%S")
    user_msg = f"🧑 **You**\n{message}\n\n⏱️ {timestamp_user}"
    bot_msg = "⏳ _Bot is typing..._"
    history.append((user_msg, bot_msg))

    try:
        time.sleep(0.5)
        answer = rag_chain(message)  # already includes references
        full_response = answer.strip()

        timestamp_bot = datetime.now().strftime("%H:%M:%S")
        bot_msg = f"🤖 **Bot**\n{full_response}\n\n⏱️ {timestamp_bot}"
        history[-1] = (user_msg, bot_msg)

    except Exception as e:
        timestamp_bot = datetime.now().strftime("%H:%M:%S")
        error_msg = f"🤖 **Bot**\n⚠️ {str(e)}\n\n⏱️ {timestamp_bot}"
        history[-1] = (user_msg, error_msg)

    return history, history, ""

# Gradio UI
def launch_gradio():
    with gr.Blocks(css="""
    .gr-button {
        background-color: orange !important;
        color: white !important;
        font-weight: bold;
        border-radius: 6px !important;
        border: 1px solid darkorange !important;
    }

    .gr-button:hover {
        background-color: darkorange !important;
    }

    .gr-textbox textarea {
        border: 2px solid orange !important;
        border-radius: 6px !important;
        padding: 0.75rem !important;
        font-size: 1rem;
    }
    """) as demo:

        gr.Markdown("# 💬 ImageOnline RAG Chatbot")
        gr.Markdown("Welcome! Ask about Website Designing, Web Development, App Development, About Us, Digital Marketing etc.")

        chatbot = gr.Chatbot()
        state = gr.State([])

        with gr.Row(equal_height=True):
            msg = gr.Textbox(
                placeholder="Ask your question here...",
                show_label=False,
                scale=9
            )
            send_btn = gr.Button("🚀 Send", scale=1)

        msg.submit(chat_interface, inputs=[msg, state], outputs=[chatbot, state, msg])
        send_btn.click(chat_interface, inputs=[msg, state], outputs=[chatbot, state, msg])

        with gr.Row():
            clear_btn = gr.Button("🧹 Clear Chat")
            clear_btn.click(fn=lambda: ([], []), outputs=[chatbot, state])

    return demo

# Launch
demo = launch_gradio()
demo.launch()