File size: 6,916 Bytes
566acfa
 
 
 
 
 
 
 
 
8108c95
566acfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
import tempfile
import os

# Load model
print("Loading model...")
model = YOLO('best.pt')

print("Model loaded successfully")


def process_image(image):
    try:
        print("\nProcessing image...")
        # Resize to match training size
        processed_image = cv2.resize(image, (1024, 1024))

        # Run detection
        results = model(processed_image, conf=0.25)

        if results[0].obb is not None and len(results[0].obb) > 0:
            obb_results = results[0].obb

            # Count detections by class
            caries_count = 0
            non_caries_count = 0

            # Process detections
            for i in range(len(obb_results)):
                cls = int(obb_results.cls[i])
                if cls == 0:  # assuming 0 is caries
                    caries_count += 1
                else:
                    non_caries_count += 1

            # Get annotated image
            annotated_image = results[0].plot(
                conf=True,
                line_width=2,
                font_size=15,
                labels=True
            )

            # Resize back to original size
            annotated_image = cv2.resize(annotated_image, (image.shape[1], image.shape[0]))

            summary = f"Found {caries_count} cavities and {non_caries_count} normal teeth"
        else:
            annotated_image = image
            summary = "No detections found"

        return annotated_image, summary

    except Exception as e:
        print(f"Error in image processing: {str(e)}")
        return image, f"Error: {str(e)}"


def process_video(video_path):
    try:
        print("Processing video...")
        cap = cv2.VideoCapture(video_path)

        # Get video properties
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

        # Calculate frame interval (7 seconds * fps)
        interval = 7 * fps

        # Create temporary output file
        temp_dir = tempfile.gettempdir()
        output_path = os.path.join(temp_dir, 'output_video.mp4')

        # Initialize video writer
        output = cv2.VideoWriter(
            output_path,
            cv2.VideoWriter_fourcc(*'mp4v'),
            fps,
            (width, height)
        )

        frame_count = 0
        last_processed_frame = None
        frames_since_last_process = 0

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            # Process frame if it's at the interval or first frame
            if frame_count == 0 or frames_since_last_process >= interval:
                print(f"Processing frame at {frame_count / fps:.1f} seconds")

                # Process frame
                processed_frame = cv2.resize(frame, (1024, 1024))
                results = model(processed_frame, conf=0.25)

                if results[0].obb is not None:
                    # Draw detections
                    annotated_frame = results[0].plot(
                        conf=True,
                        line_width=2,
                        font_size=15,
                        labels=True
                    )
                    annotated_frame = cv2.resize(annotated_frame, (width, height))
                    last_processed_frame = annotated_frame
                else:
                    last_processed_frame = frame

                frames_since_last_process = 0

            # Write the last processed frame
            if last_processed_frame is not None:
                output.write(last_processed_frame)
            else:
                output.write(frame)

            frame_count += 1
            frames_since_last_process += 1
            print(f"Processed {frame_count}/{total_frames} frames", end='\r')

        cap.release()
        output.release()

        summary = f"Processed video with {total_frames} frames\nDetected frames at 7-second intervals"
        return output_path, summary

    except Exception as e:
        print(f"Error in video processing: {str(e)}")
        return None, f"Error: {str(e)}"


# Create Gradio interface with examples
with gr.Blocks(title="Dental Cavity Detection") as demo:
    gr.Markdown("""
    # Dental Cavity Detection System
    Upload or select an example to detect dental cavities
    """)

    with gr.Tabs():
        with gr.Tab("Image Detection"):
            with gr.Row():
                # Input Column
                with gr.Column():
                    image_input = gr.Image(label="Upload Image")
                    image_button = gr.Button("Detect Cavities", variant="primary")

                # Output Column
                with gr.Column():
                    image_output = gr.Image(label="Detection Result")
                    image_summary = gr.Textbox(label="Detection Summary")

            # Add examples using Gradio's examples feature
            gr.Examples(
                examples=[
                    ["image1.jpg"],
                    ["image2.jpg"]
                ],
                inputs=image_input,
                label="Example Images - Click to use"
            )

            # Process button click
            image_button.click(
                fn=process_image,
                inputs=image_input,
                outputs=[image_output, image_summary]
            )

        with gr.Tab("Video Detection"):
            with gr.Row():
                # Input Column
                with gr.Column():
                    video_input = gr.Video(label="Upload Video")
                    video_button = gr.Button("Process Video", variant="primary")

                # Output Column
                with gr.Column():
                    video_output = gr.Video(label="Processed Video")
                    gr.Markdown("""⚠️ Note: Video preview may not work in browser.
                                        Please use the download button below the video to view results.""")
                    video_summary = gr.Textbox(label="Processing Summary")

            # Add video example
            gr.Examples(
                examples=[
                    ["video1.mp4"]
                ],
                inputs=video_input,
                label="Example Video - Click to use"
            )

            # Process button click
            video_button.click(
                fn=process_video,
                inputs=video_input,
                outputs=[video_output, video_summary]
            )

    # Add footer with instructions
    gr.Markdown("""
    ### Instructions:
    1. Choose Image or Video tab
    2. Upload your own file or click an example below
    3. Click the detection button to process
    """)

if __name__ == "__main__":
    demo.launch(debug=True)