8927722V / app.py
Potatobum's picture
Update app.py
114187c verified
import torch
import gradio as gr
import numpy as np
from torchvision.ops import nms
from PIL import Image
import cv2
# Load the model
model = torch.jit.load("best.torchscript")
model.eval()
# Define the detection function
def detect_salmon(image):
try:
# Preprocess the image
image_resized = Image.fromarray(image).resize((640, 640))
input_tensor = torch.from_numpy(np.array(image_resized).transpose(2, 0, 1) / 255.0).unsqueeze(0).float()
# Run inference
output = model(input_tensor)
detection_data = output[0][0].detach().numpy() # Remove batch dimension
# Filter detections by confidence threshold
conf_threshold = 0.5
filtered_detections = detection_data[detection_data[:, 4] >= conf_threshold]
# Define class names (update based on your classes)
class_names = ["background", "farmed", "wild"]
# Prepare boxes for NMS
boxes = []
confidences = []
labels = []
for detection in filtered_detections:
if len(detection) < 7: # Ensure detection has enough elements
continue
x_center, y_center, width, height = detection[:4]
confidence = detection[4]
class_probs = detection[5:] # Probabilities for all classes
# Get the predicted class by finding the max probability index
class_index = np.argmax(class_probs)
class_label = class_names[class_index]
x_min = int(x_center - width / 2.2)
y_min = int(y_center - height / 2.2)
x_max = int(x_center + width / 2.2)
y_max = int(y_center + height / 2.2)
boxes.append([x_min, y_min, x_max, y_max])
confidences.append(confidence)
labels.append(class_label)
if not boxes: # No valid boxes
raise ValueError("No detections with sufficient confidence.")
boxes_tensor = torch.tensor(boxes, dtype=torch.float32)
scores_tensor = torch.tensor(confidences, dtype=torch.float32)
# Apply NMS
iou_threshold = 0.5
nms_indices = nms(boxes_tensor, scores_tensor, iou_threshold)
nms_boxes = boxes_tensor[nms_indices].tolist()
nms_labels = [labels[i] for i in nms_indices]
# Draw bounding boxes
image_with_boxes = image.copy()
for i, box in enumerate(nms_boxes):
x_min, y_min, x_max, y_max = map(int, box)
label = nms_labels[i]
cv2.rectangle(image_with_boxes, (x_min, y_min), (x_max, y_max), (255, 0, 0), 2)
cv2.putText(image_with_boxes, label, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
return image_with_boxes
except Exception as e:
# Return error as text overlay on the image
image_with_error = image.copy()
cv2.putText(image_with_error, f"Error: {str(e)}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
return image_with_error
# Define the Gradio interface
interface = gr.Interface(
fn=detect_salmon,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Image(type="numpy", label="Output Image"),
title="Salmon Detection",
description="Upload an image to detect whether the salmon is farmed or wild."
)
# Launch the app
if __name__ == "__main__":
interface.launch()