File size: 84,103 Bytes
bd39f54
10c7c36
bd39f54
10c7c36
bd39f54
 
 
 
 
 
 
10c7c36
 
 
 
 
 
 
 
bd39f54
 
10c7c36
 
 
 
bd39f54
10c7c36
bd39f54
 
11b81b9
bd39f54
 
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
10c7c36
11b81b9
 
bd39f54
11b81b9
 
 
 
 
10c7c36
 
 
 
 
bd39f54
10c7c36
 
 
 
bd39f54
 
 
 
 
11b81b9
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
11b81b9
10c7c36
 
 
 
11b81b9
10c7c36
 
 
 
11b81b9
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
 
11b81b9
 
10c7c36
 
 
 
11b81b9
 
 
 
 
 
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
 
 
 
 
 
 
 
 
 
 
bd39f54
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
 
11b81b9
 
 
 
 
 
 
 
 
10c7c36
 
 
 
11b81b9
10c7c36
 
 
 
 
 
 
 
 
 
bd39f54
10c7c36
bd39f54
10c7c36
bd39f54
10c7c36
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
 
 
 
 
bd39f54
 
 
 
 
 
11b81b9
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
 
11b81b9
 
 
 
 
 
 
10c7c36
 
 
 
11b81b9
10c7c36
 
 
 
 
 
 
 
 
 
bd39f54
10c7c36
bd39f54
10c7c36
bd39f54
10c7c36
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
 
 
 
bd39f54
 
 
 
 
 
 
 
11b81b9
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
 
11b81b9
 
 
 
 
 
 
 
 
10c7c36
 
 
 
11b81b9
10c7c36
 
 
 
 
 
 
 
 
 
bd39f54
10c7c36
bd39f54
10c7c36
bd39f54
10c7c36
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
 
 
 
 
bd39f54
10c7c36
bd39f54
 
 
10c7c36
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
10c7c36
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
bd39f54
 
 
 
 
 
 
 
 
 
 
10c7c36
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
 
 
 
bd39f54
 
 
 
 
10c7c36
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
bd39f54
10c7c36
 
bd39f54
 
 
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
bd39f54
 
10c7c36
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
10c7c36
 
11b81b9
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
10c7c36
 
 
 
 
bd39f54
10c7c36
 
 
 
 
bd39f54
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
10c7c36
bd39f54
11b81b9
10c7c36
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
10c7c36
 
 
 
bd39f54
 
10c7c36
 
 
bd39f54
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
 
10c7c36
 
11b81b9
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
 
bd39f54
 
11b81b9
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
bd39f54
11b81b9
bd39f54
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
10c7c36
 
11b81b9
 
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
bd39f54
11b81b9
10c7c36
 
11b81b9
 
 
 
 
bd39f54
10c7c36
 
 
 
 
 
 
 
 
 
11b81b9
bd39f54
11b81b9
bd39f54
 
11b81b9
 
bd39f54
 
11b81b9
 
 
 
 
 
 
bd39f54
10c7c36
 
11b81b9
10c7c36
 
 
11b81b9
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
10c7c36
11b81b9
 
 
 
 
 
 
 
 
 
10c7c36
 
 
11b81b9
 
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
bd39f54
 
10c7c36
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
bd39f54
 
10c7c36
bd39f54
 
 
10c7c36
 
bd39f54
 
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
10c7c36
 
 
 
 
11b81b9
10c7c36
11b81b9
10c7c36
11b81b9
 
10c7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
10c7c36
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c7c36
 
 
 
 
bd39f54
 
10c7c36
 
 
 
 
 
 
 
 
11b81b9
 
10c7c36
 
 
 
11b81b9
10c7c36
 
 
 
11b81b9
10c7c36
 
 
 
11b81b9
 
10c7c36
 
 
 
11b81b9
10c7c36
 
 
 
11b81b9
10c7c36
 
 
bd39f54
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
import copy
import math
import os.path
import random

import gradio as gr
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
import pandas as pd

from analysis.bayes_model import *
from analysis.distance_model import *
from analysis.gradient_model import *
from analysis.kernel_model import *
from analysis.shap_model import *
from analysis.tree_model import *
from metrics.calculate_classification_metrics import ClassificationMetrics
from metrics.calculate_regression_metrics import RegressionMetrics
from static.process import *
from analysis.linear_model import *
from visualization.draw_boxplot import draw_boxplot
from visualization.draw_data_fit_total import draw_data_fit_total
from visualization.draw_heat_map import draw_heat_map
from visualization.draw_histogram import draw_histogram
from visualization.draw_learning_curve_total import draw_learning_curve_total
from static.new_class import *

import warnings

warnings.filterwarnings("ignore")


# [模型]
class ChooseModelMetrics:
    @classmethod
    def choose(cls, cur_model):
        if cur_model == MN.linear_regression:
            return RegressionMetrics.get_metrics()
        elif cur_model == MN.polynomial_regression:
            return RegressionMetrics.get_metrics()
        elif cur_model == MN.logistic_regression:
            return ClassificationMetrics.get_metrics()
        elif cur_model == MN.decision_tree_classifier:
            return ClassificationMetrics.get_metrics()
        elif cur_model == MN.random_forest_classifier:
            return ClassificationMetrics.get_metrics()
        elif cur_model == MN.random_forest_regression:
            return RegressionMetrics.get_metrics()
        elif cur_model == MN.xgboost_classifier:
            return ClassificationMetrics.get_metrics()
        elif cur_model == MN.lightGBM_classifier:
            return ClassificationMetrics.get_metrics()
        elif cur_model == MN.gradient_boosting_regression:
            return RegressionMetrics.get_metrics()
        elif cur_model == MN.svm_classifier:
            return ClassificationMetrics.get_metrics()
        elif cur_model == MN.svm_regression:
            return RegressionMetrics.get_metrics()
        elif cur_model == MN.knn_classifier:
            return ClassificationMetrics.get_metrics()
        elif cur_model == MN.knn_regression:
            return RegressionMetrics.get_metrics()
        elif cur_model == MN.naive_bayes_classification:
            return ClassificationMetrics.get_metrics()


# [模型]
class ChooseModelParams:
    @classmethod
    def choose(cls, cur_model):
        if cur_model == MN.linear_regression:
            return LinearRegressionParams.get_params(Dataset.linear_regression_model_type)
        elif cur_model == MN.polynomial_regression:
            return PolynomialRegressionParams.get_params()
        elif cur_model == MN.logistic_regression:
            return LogisticRegressionParams.get_params()
        elif cur_model == MN.decision_tree_classifier:
            return DecisionTreeClassifierParams.get_params()
        elif cur_model == MN.random_forest_classifier:
            return RandomForestClassifierParams.get_params()
        elif cur_model == MN.random_forest_regression:
            return RandomForestRegressionParams.get_params()
        elif cur_model == MN.xgboost_classifier:
            return XgboostClassifierParams.get_params()
        elif cur_model == MN.lightGBM_classifier:
            return LightGBMClassifierParams.get_params()
        elif cur_model == MN.gradient_boosting_regression:
            return GradientBoostingParams.get_params()
        elif cur_model == MN.svm_classifier:
            return SVMClassifierParams.get_params()
        elif cur_model == MN.svm_regression:
            return SVMRegressionParams.get_params()
        elif cur_model == MN.knn_classifier:
            return KNNClassifierParams.get_params()
        elif cur_model == MN.knn_regression:
            return KNNRegressionParams.get_params()
        elif cur_model == MN.naive_bayes_classification:
            return NaiveBayesClassifierParams.get_params(Dataset.naive_bayes_classifier_model_type)


class StaticValue:
    max_num = 20


class FilePath:
    png_base = "./buffer/{}.png"
    excel_base = "./buffer/{}.xlsx"

    # [绘图]
    display_dataset = "current_excel_data"

    data_distribution_plot = "data_distribution_plot"
    descriptive_indicators_plot = "descriptive_indicators_plot"
    heatmap_plot = "heatmap_plot"
    learning_curve_plot = "learning_curve_plot"
    shap_beeswarm_plot = "shap_beeswarm_plot"
    data_fit_plot = "data_fit_plot"
    waterfall_plot = "waterfall_plot"
    force_plot = "force_plot"
    dependence_plot = "dependence_plot"


class MN:  # ModelName
    classification = "classification"
    regression = "regression"

    # [模型]
    linear_regression = "linear regressor"
    polynomial_regression = "polynomial regressor"
    logistic_regression = "logistic regressor"
    decision_tree_classifier = "decision tree classifier"
    random_forest_classifier = "random forest classifier"
    random_forest_regression = "random forest regressor"
    xgboost_classifier = "xgboost classifier"
    lightGBM_classifier = "lightGBM classifier"
    gradient_boosting_regression = "gradient boosting regressor"
    svm_classifier = "svm classifier"
    svm_regression = "svm regressor"
    knn_classifier = "knn classifier"
    knn_regression = "knn regressor"
    naive_bayes_classification = "naive bayes classification"

    # [绘图]
    data_distribution = "data_distribution"
    descriptive_indicators = "descriptive_indicators"
    heatmap = "heatmap"
    learning_curve = "learning_curve"
    shap_beeswarm = "shap_beeswarm"
    data_fit = "data_fit"
    waterfall = "waterfall"
    force = "force"
    dependence = "dependence"


class LN:  # LabelName
    choose_dataset_radio = "选择所需数据源 [必选]"
    display_total_col_num_text = "总列数"
    display_total_row_num_text = "总行数"
    display_na_list_text = "存在缺失值的列"
    del_all_na_col_button = "删除所有存在缺失值的列 [可选]"
    display_duplicate_num_text = "重复的行数"
    del_col_checkboxgroup = "选择所需删除的列"
    del_col_button = "删除 [可选]"
    remain_row_slider = "保留的行数"
    remain_row_button = "保留 [可选]"
    del_duplicate_button = "删除所有重复行 [可选]"
    encode_label_checkboxgroup = "选择所需标签编码的字符型数值列"
    display_encode_label_dataframe = "标签编码信息"
    encode_label_button = "字符型转数值型 [可选]"
    change_data_type_to_float_button = "将所有数据强制转换为浮点型(除第1列以外)[必选]"
    standardize_data_checkboxgroup = "选择所需标准化的列"
    standardize_data_button = "标准化 [可选]"
    select_as_y_radio = "选择因变量 [必选]"
    choose_assign_radio = "选择任务类型(同时会根据任务类型将第1列数据强制转换)[必选]"
    model_optimize_radio = "选择超参数优化方法"
    model_train_button = "训练"
    model_train_params_dataframe = "训练后的模型参数"
    model_train_metrics_dataframe = "训练后的模型指标"
    select_as_model_radio = "选择所需训练的模型"

    # [模型]
    linear_regression_model_radio = "选择线性回归的模型"
    naive_bayes_classification_model_radio = "选择朴素贝叶斯分类的模型"

    title_name_textbox = "标题"
    x_label_textbox = "x 轴名称"
    y_label_textbox = "y 轴名称"
    colors = ["颜色 {}".format(i) for i in range(StaticValue.max_num)]
    labels = ["图例 {}".format(i) for i in range(StaticValue.max_num)]

    # [绘图]
    heatmap_is_rotate = "x轴标签是否旋转"
    heatmap_checkboxgroup = "选择所需绘制系数热力图的列"
    heatmap_button = "绘制系数热力图"
    data_distribution_radio = "选择所需绘制数据分布图的列"
    data_distribution_is_rotate = "x轴标签是否旋转"
    data_distribution_button = "绘制数据分布图"
    descriptive_indicators_checkboxgroup = "选择所需绘制箱线统计图的列"
    descriptive_indicators_is_rotate = "x轴标签是否旋转"
    descriptive_indicators_button = "绘制箱线统计图"
    learning_curve_checkboxgroup = "选择所需绘制学习曲线图的模型"
    learning_curve_button = "绘制学习曲线图"
    shap_beeswarm_radio = "选择所需绘制特征蜂群图的模型"
    shap_beeswarm_type = "选择图像类型"
    shap_beeswarm_button = "绘制特征蜂群图"
    data_fit_checkboxgroup = "选择所需绘制数据拟合图的模型"
    data_fit_button = "绘制数据拟合图"
    waterfall_radio = "选择所需绘制特征瀑布图的模型"
    waterfall_number = "输入相关特征的变量索引"
    waterfall_button = "绘制特征瀑布图"
    force_radio = "选择所需绘制特征力图的模型"
    force_number = "输入相关特征的变量索引"
    force_button = "绘制特征力图"
    dependence_radio = "选择所需绘制特征依赖图的模型"
    dependence_col = "选择相应的列"
    dependence_button = "绘制特征依赖图"

    data_distribution_plot = "数据分布图"
    descriptive_indicators_plot = "箱线统计图"
    heatmap_plot = "系数热力图"
    learning_curve_plot = "学习曲线图"
    shap_beeswarm_plot = "特征蜂群图"
    data_fit_plot = "数据拟合图"
    waterfall_plot = "特征瀑布图"
    force_plot = "特征力图"
    dependence_plot = "特征依赖图"


def get_return_extra(is_visible, extra_gr_dict: dict = None):
    if is_visible:
        gr_dict = {
            draw_file: gr.File(Dataset.after_get_file(), visible=Dataset.check_file()),
        }

        if extra_gr_dict:
            gr_dict.update(extra_gr_dict)

        return gr_dict

    gr_dict = {
        draw_plot: gr.Plot(visible=False),
        draw_file: gr.File(visible=False),
    }

    gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num)))
    gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
    gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
    gr_dict.update({title_name_textbox: gr.Textbox(visible=False)})
    gr_dict.update({x_label_textbox: gr.Textbox(visible=False)})
    gr_dict.update({y_label_textbox: gr.Textbox(visible=False)})

    return gr_dict


def get_outputs():
    gr_set = {
        choose_custom_dataset_file,
        display_dataset_dataframe,
        display_total_col_num_text,
        display_total_row_num_text,
        display_na_list_text,
        del_all_na_col_button,
        display_duplicate_num_text,
        del_duplicate_button,
        del_col_checkboxgroup,
        del_col_button,
        remain_row_slider,
        remain_row_button,
        encode_label_button,
        display_encode_label_dataframe,
        encode_label_checkboxgroup,
        data_type_dataframe,
        change_data_type_to_float_button,
        standardize_data_checkboxgroup,
        standardize_data_button,
        select_as_y_radio,
        model_optimize_radio,
        model_train_button,
        model_train_checkbox,
        model_train_params_dataframe,
        model_train_metrics_dataframe,
        select_as_model_radio,
        choose_assign_radio,
        display_dataset,
        draw_plot,
        draw_file,
        title_name_textbox,
        x_label_textbox,
        y_label_textbox,

        # [模型]
        linear_regression_model_radio,
        naive_bayes_classification_model_radio,

        # [绘图]
        heatmap_is_rotate,
        heatmap_checkboxgroup,
        heatmap_button,
        data_distribution_radio,
        data_distribution_is_rotate,
        data_distribution_button,
        descriptive_indicators_checkboxgroup,
        descriptive_indicators_is_rotate,
        descriptive_indicators_dataframe,
        descriptive_indicators_button,
        learning_curve_checkboxgroup,
        learning_curve_button,
        shap_beeswarm_radio,
        shap_beeswarm_type,
        shap_beeswarm_button,
        data_fit_checkboxgroup,
        data_fit_button,
        waterfall_radio,
        waterfall_number,
        waterfall_button,
        force_radio,
        force_number,
        force_button,
        dependence_radio,
        dependence_col,
        dependence_button,
    }

    gr_set.update(set(colorpickers))
    gr_set.update(set(color_textboxs))
    gr_set.update(set(legend_labels_textboxs))

    return gr_set


def get_return(is_visible, extra_gr_dict: dict = None):
    if is_visible:
        gr_dict = {
            display_dataset_dataframe: gr.Dataframe(add_index_into_df(Dataset.data), type="pandas", visible=True),
            display_dataset: gr.File(Dataset.after_get_display_dataset_file(), visible=Dataset.check_display_dataset_file()),
            display_total_col_num_text: gr.Textbox(str(Dataset.get_total_col_num()), visible=True, label=LN.display_total_col_num_text),
            display_total_row_num_text: gr.Textbox(str(Dataset.get_total_row_num()), visible=True, label=LN.display_total_row_num_text),
            display_na_list_text: gr.Textbox(Dataset.get_na_list_str(), visible=True, label=LN.display_na_list_text),
            del_all_na_col_button: gr.Button(LN.del_all_na_col_button, visible=True),
            display_duplicate_num_text: gr.Textbox(str(Dataset.get_duplicate_num()), visible=True, label=LN.display_duplicate_num_text),
            del_duplicate_button: gr.Button(LN.del_duplicate_button, visible=True),
            del_col_checkboxgroup: gr.Checkboxgroup(Dataset.get_col_list(), visible=True, label=LN.del_col_checkboxgroup),
            del_col_button: gr.Button(LN.del_col_button, visible=True),
            remain_row_slider: gr.Slider(0, Dataset.get_max_num(), value=Dataset.get_total_row_num(), step=1, visible=True, label=LN.remain_row_slider),
            remain_row_button: gr.Button(LN.remain_row_button, visible=True),
            encode_label_button: gr.Button(LN.encode_label_button, visible=True),
            encode_label_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_numeric_list(), visible=True, label=LN.encode_label_checkboxgroup),
            display_encode_label_dataframe: gr.Dataframe(visible=False),
            data_type_dataframe: gr.Dataframe(Dataset.get_data_type(), visible=True),
            change_data_type_to_float_button: gr.Button(LN.change_data_type_to_float_button, visible=True),
            select_as_y_radio: gr.Radio(Dataset.get_col_list(), visible=True, label=LN.select_as_y_radio),
            standardize_data_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_standardized_data(), visible=True, label=LN.standardize_data_checkboxgroup),
            standardize_data_button: gr.Button(LN.standardize_data_button, visible=True),
            choose_assign_radio: gr.Radio(Dataset.get_assign_list(), visible=True, label=LN.choose_assign_radio),

            select_as_model_radio: gr.Radio(Dataset.get_model_list(), visible=Dataset.check_before_train(), label=LN.select_as_model_radio),
            model_optimize_radio: gr.Radio(Dataset.get_optimize_list(), visible=Dataset.check_before_train(), label=LN.model_optimize_radio),
            model_train_button: gr.Button(LN.model_train_button, visible=Dataset.check_before_train()),
            model_train_checkbox: gr.Checkbox(Dataset.get_model_container_status(), visible=Dataset.check_select_model(), label=Dataset.get_model_label()),
            model_train_params_dataframe: gr.Dataframe(Dataset.get_model_train_params_dataframe(), type="pandas", visible=Dataset.get_model_container_status()),
            model_train_metrics_dataframe: gr.Dataframe(Dataset.get_model_train_metrics_dataframe(), type="pandas", visible=Dataset.get_model_container_status()),

            draw_plot: gr.Plot(visible=False),
            draw_file: gr.File(visible=False),
            title_name_textbox: gr.Textbox(visible=False),
            x_label_textbox: gr.Textbox(visible=False),
            y_label_textbox: gr.Textbox(visible=False),

            # [模型]
            linear_regression_model_radio: gr.Radio(Dataset.get_linear_regression_model_list(), visible=Dataset.get_linear_regression_mark(), label=LN.linear_regression_model_radio),
            naive_bayes_classification_model_radio: gr.Radio(Dataset.get_naive_bayes_classifier_model_list(), visible=Dataset.get_naive_bayes_classifier_mark(), label=LN.naive_bayes_classification_model_radio),

            # [绘图]
            heatmap_checkboxgroup: gr.Checkboxgroup(Dataset.get_float_col_list(), visible=True, label=LN.heatmap_checkboxgroup),
            heatmap_is_rotate: gr.Checkbox(visible=True, label=LN.heatmap_is_rotate),
            heatmap_button: gr.Button(LN.heatmap_button, visible=True),
            descriptive_indicators_checkboxgroup: gr.Checkboxgroup(Dataset.get_float_col_list(), visible=True, label=LN.descriptive_indicators_checkboxgroup),
            data_distribution_radio: gr.Radio(Dataset.get_str_col_list(), visible=True, label=LN.data_distribution_radio),
            data_distribution_is_rotate: gr.Checkbox(visible=True, label=LN.data_distribution_is_rotate),
            data_distribution_button: gr.Button(LN.data_distribution_button, visible=True),
            descriptive_indicators_is_rotate: gr.Checkbox(visible=True, label=LN.descriptive_indicators_is_rotate),
            descriptive_indicators_dataframe: gr.Dataframe(Dataset.get_descriptive_indicators_df(), type="pandas", visible=Dataset.check_descriptive_indicators_df()),
            descriptive_indicators_button: gr.Button(LN.descriptive_indicators_button, visible=True),
            learning_curve_checkboxgroup: gr.Checkboxgroup(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.learning_curve_checkboxgroup),
            learning_curve_button: gr.Button(LN.learning_curve_button, visible=Dataset.check_before_train()),
            shap_beeswarm_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.shap_beeswarm_radio),
            shap_beeswarm_type: gr.Radio(Dataset.get_shap_beeswarm_plot_type(), visible=Dataset.check_before_train(), label=LN.shap_beeswarm_type),
            shap_beeswarm_button: gr.Button(LN.shap_beeswarm_button, visible=Dataset.check_before_train()),
            data_fit_checkboxgroup: gr.Checkboxgroup(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.data_fit_checkboxgroup),
            data_fit_button: gr.Button(LN.data_fit_button, visible=Dataset.check_before_train()),
            waterfall_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.waterfall_radio),
            waterfall_number: gr.Slider(0, Dataset.get_total_row_num(), value=0, step=1, visible=Dataset.check_before_train(), label=LN.waterfall_number),
            waterfall_button: gr.Button(LN.waterfall_button, visible=Dataset.check_before_train()),
            force_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.force_radio),
            force_number: gr.Slider(0, Dataset.get_total_row_num(), value=0, step=1, visible=Dataset.check_before_train(), label=LN.force_number),
            force_button: gr.Button(LN.force_button, visible=Dataset.check_before_train()),
            dependence_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.dependence_radio),
            dependence_col: gr.Radio(Dataset.get_col_list(), visible=Dataset.check_before_train(), label=LN.dependence_col),
            dependence_button: gr.Button(LN.dependence_button, visible=Dataset.check_before_train()),

        }

        gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num)))
        gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
        gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))

        if extra_gr_dict:
            gr_dict.update(extra_gr_dict)

        return gr_dict

    gr_dict = {
        choose_custom_dataset_file: gr.File(None, visible=True),
        display_dataset_dataframe: gr.Dataframe(visible=False),
        display_dataset: gr.File(visible=False),
        display_total_col_num_text: gr.Textbox(visible=False),
        display_total_row_num_text: gr.Textbox(visible=False),
        display_na_list_text: gr.Textbox(visible=False),
        del_all_na_col_button: gr.Button(visible=False),
        display_duplicate_num_text: gr.Textbox(visible=False),
        del_duplicate_button: gr.Button(visible=False),
        del_col_checkboxgroup: gr.Checkboxgroup(visible=False),
        del_col_button: gr.Button(visible=False),
        remain_row_slider: gr.Slider(visible=False),
        encode_label_button: gr.Button(visible=False),
        display_encode_label_dataframe: gr.Dataframe(visible=False),
        encode_label_checkboxgroup: gr.Checkboxgroup(visible=False),
        data_type_dataframe: gr.Dataframe(visible=False),
        change_data_type_to_float_button: gr.Button(visible=False),
        standardize_data_checkboxgroup: gr.Checkboxgroup(visible=False),
        standardize_data_button: gr.Button(visible=False),
        select_as_y_radio: gr.Radio(visible=False),
        model_optimize_radio: gr.Radio(visible=False),
        model_train_button: gr.Button(visible=False),
        model_train_checkbox: gr.Checkbox(visible=False),
        model_train_metrics_dataframe: gr.Dataframe(visible=False),
        model_train_params_dataframe: gr.Dataframe(visible=False),
        select_as_model_radio: gr.Radio(visible=False),
        choose_assign_radio: gr.Radio(visible=False),

        draw_plot: gr.Plot(visible=False),
        draw_file: gr.File(visible=False),
        title_name_textbox: gr.Textbox(visible=False),
        x_label_textbox: gr.Textbox(visible=False),
        y_label_textbox: gr.Textbox(visible=False),

        # [模型]
        linear_regression_model_radio: gr.Radio(visible=False),
        naive_bayes_classification_model_radio: gr.Radio(visible=False),

        # [绘图]
        heatmap_checkboxgroup: gr.Checkboxgroup(visible=False),
        heatmap_is_rotate: gr.Checkbox(visible=False),
        heatmap_button: gr.Button(visible=False),
        data_distribution_radio: gr.Radio(visible=False),
        data_distribution_is_rotate: gr.Checkbox(visible=False),
        data_distribution_button: gr.Button(visible=False),
        descriptive_indicators_checkboxgroup: gr.Checkboxgroup(visible=False),
        descriptive_indicators_is_rotate: gr.Checkbox(visible=False),
        descriptive_indicators_dataframe: gr.Dataframe(visible=False),
        descriptive_indicators_button: gr.Button(visible=False),
        learning_curve_checkboxgroup: gr.Checkboxgroup(visible=False),
        learning_curve_button: gr.Button(visible=False),
        shap_beeswarm_radio: gr.Radio(visible=False),
        shap_beeswarm_type: gr.Radio(visible=False),
        shap_beeswarm_button: gr.Button(visible=False),
        data_fit_checkboxgroup: gr.Checkboxgroup(visible=False),
        data_fit_button: gr.Button(visible=False),
        waterfall_radio: gr.Radio(visible=False),
        waterfall_number: gr.Slider(visible=False),
        waterfall_button: gr.Button(visible=False),
        force_radio: gr.Radio(visible=False),
        force_number: gr.Slider(visible=False),
        force_button: gr.Button(visible=False),
        dependence_radio: gr.Radio(visible=False),
        dependence_col: gr.Radio(visible=False),
        dependence_button: gr.Button(visible=False),
    }

    gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num)))
    gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
    gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))

    return gr_dict


class Dataset:
    file = ""
    data = pd.DataFrame()

    na_list = []
    non_numeric_list = []
    str2int_mappings = {}
    max_num = 0
    data_copy = pd.DataFrame()
    assign = ""
    cur_model = ""
    select_y_mark = False

    descriptive_indicators_df = pd.DataFrame()

    linear_regression_model_type = ""
    naive_bayes_classifier_model_type = ""

    container_dict = {
        # [模型]
        MN.linear_regression: Container(),
        MN.polynomial_regression: Container(),
        MN.logistic_regression: Container(),
        MN.decision_tree_classifier: Container(),
        MN.random_forest_classifier: Container(),
        MN.random_forest_regression: Container(),
        MN.xgboost_classifier: Container(),
        MN.lightGBM_classifier: Container(),
        MN.gradient_boosting_regression: Container(),
        MN.svm_classifier: Container(),
        MN.svm_regression: Container(),
        MN.knn_classifier: Container(),
        MN.knn_regression: Container(),
        MN.naive_bayes_classification: Container(),
    }

    visualize = ""

    @classmethod
    def check_descriptive_indicators_df(cls):
        return True if not cls.descriptive_indicators_df.empty else False

    @classmethod
    def get_descriptive_indicators_df(cls):
        return cls.descriptive_indicators_df

    @classmethod
    def get_notes(cls):
        notes = ""
        with open("./data/notes.md", "r", encoding="utf-8") as f:
            notes = str(f.read())
        return notes

    @classmethod
    def get_dataset_list(cls):
        return ["自定义", "Iris Dataset", "Wine Dataset", "Breast Cancer Dataset", "Diabetes Dataset", "California Housing Dataset"]

    @classmethod
    def get_col_list(cls):
        return [x for x in cls.data.columns.values]

    @classmethod
    def get_na_list_str(cls) -> str:
        na_series = cls.data.isna().any(axis=0)
        na_list = []
        na_list_str = ""
        for i in range(len(na_series)):
            cur_value = na_series[i]
            cur_index = na_series.index[i]
            if cur_value:
                na_list_str += cur_index + ", "
                na_list.append(cur_index)

        na_list_str = na_list_str.rstrip(", ")

        cls.na_list = na_list

        if not na_list:
            return "无"

        return na_list_str

    @classmethod
    def get_total_col_num(cls) -> int:
        return len(cls.data.columns)

    @classmethod
    def get_total_row_num(cls) -> int:
        return len(cls.data)

    @classmethod
    def update(cls, file: str, data: pd.DataFrame):
        cls.file = file
        cls.data = data
        cls.max_num = len(data)
        cls.data_copy = data

    @classmethod
    def clear(cls):
        cls.file = ""
        cls.data = pd.DataFrame()

    @classmethod
    def get_display_dataset_file(cls):
        file_path = FilePath.excel_base.format(FilePath.display_dataset)

        return file_path

    @classmethod
    def check_display_dataset_file(cls):
        return os.path.exists(cls.get_display_dataset_file())

    @classmethod
    def after_get_display_dataset_file(cls):
        if not cls.data.empty:
            cls.data.to_excel(cls.get_display_dataset_file(), index=False)

        return cls.get_display_dataset_file() if cls.check_display_dataset_file() else None

    @classmethod
    def del_col(cls, col_list: list):
        for col in col_list:
            if col in cls.data.columns.values:
                cls.data.drop(col, axis=1, inplace=True)

    @classmethod
    def get_max_num(cls):
        return cls.max_num

    @classmethod
    def remain_row(cls, num):
        cls.data = cls.data_copy.iloc[:num, :]

    @classmethod
    def del_all_na_col(cls):
        for col in cls.na_list:
            if col in cls.data.columns.values:
                cls.data.drop(col, axis=1, inplace=True)

    @classmethod
    def get_duplicate_num(cls):
        data_copy = copy.deepcopy(cls.data)
        return len(cls.data) - len(data_copy.drop_duplicates())

    @classmethod
    def del_duplicate(cls):
        cls.data = cls.data.drop_duplicates().reset_index().drop("index", axis=1)

    @classmethod
    def encode_label(cls, col_list: list, extra_mark=False):
        data_copy = copy.deepcopy(cls.data)

        str2int_mappings = dict(zip(col_list, [{} for _ in range(len(col_list))]))

        for col in str2int_mappings.keys():
            keys = np.array(data_copy[col].drop_duplicates())
            values = [x for x in range(len(keys))]
            str2int_mappings[col] = dict(zip(keys, values))

        for col, mapping in str2int_mappings.items():
            series = data_copy[col]

            for k, v in mapping.items():
                series.replace(k, v, inplace=True)
            data_copy[col] = series

        for k, v in str2int_mappings.items():
            if np.nan in v.keys():
                v.update({"nan": v.pop(np.nan)})
                str2int_mappings[k] = v

        if extra_mark:
            return data_copy
        else:
            cls.data = data_copy
            cls.str2int_mappings = str2int_mappings

    @classmethod
    def get_str2int_mappings_df(cls):
        columns_list = ["列名", "字符型", "数值型"]
        str2int_mappings_df = pd.DataFrame(columns=columns_list)

        for k, v in cls.str2int_mappings.items():
            cur_df = pd.DataFrame(columns=columns_list)
            cur_df["列名"] = pd.DataFrame([k] * len(v.keys()))
            cur_df["字符型"] = pd.DataFrame([x for x in v.keys()])
            cur_df["数值型"] = pd.DataFrame([x for x in v.values()])

            str2int_mappings_df = pd.concat([str2int_mappings_df, cur_df], axis=0)

            blank_df = pd.DataFrame(columns=columns_list)
            blank_df.loc[0] = ["", "", ""]
            str2int_mappings_df = pd.concat([str2int_mappings_df, blank_df], axis=0)

        return str2int_mappings_df.iloc[:-1, :]

    @classmethod
    def get_non_numeric_list(cls):
        data_copy = copy.deepcopy(cls.data)
        data_copy = data_copy.astype(str)

        non_numeric_list = []
        for col in data_copy.columns.values:
            if pd.to_numeric(data_copy[col], errors="coerce").isnull().values.any():
                non_numeric_list.append(col)

        cls.non_numeric_list = non_numeric_list

        return non_numeric_list

    @classmethod
    def get_data_type(cls):
        columns_list = ["列名", "数据类型"]

        data_type_dict = {}

        for col in cls.data.columns.values:
            data_type_dict[col] = cls.data[col].dtype.name

        data_type_df = pd.DataFrame(columns=columns_list)
        data_type_df["列名"] = [x for x in data_type_dict.keys()]
        data_type_df["数据类型"] = [x for x in data_type_dict.values()]

        return data_type_df

    @classmethod
    def change_data_type_to_float(cls):
        data_copy = cls.data

        for i, col in enumerate(data_copy.columns.values):
            if i != 0:
                data_copy[col] = data_copy[col].astype(float)

        cls.data = data_copy

    @classmethod
    def get_non_standardized_data(cls):
        not_standardized_data_list = []

        for col in cls.data.columns.values:
            if cls.data[col].dtype.name in ["int64", "float64"]:
                if not np.array_equal(np.round(preprocessing.scale(cls.data[col]), decimals=2),
                                      np.round(cls.data[col].values.round(2), decimals=2)):
                    not_standardized_data_list.append(col)

        return not_standardized_data_list

    @classmethod
    def check_before_train(cls):
        if cls.assign == "" or not cls.select_y_mark:
            return False

        for i, col in enumerate(cls.data.columns.values):
            if i == 0:
                if not (all(isinstance(x, str) for x in cls.data.iloc[:, 0]) or all(isinstance(x, float) for x in cls.data.iloc[:, 0])):
                    return False
            else:
                if cls.data[col].dtype.name != "float64":
                    return False

        return True

    @classmethod
    def standardize_data(cls, col_list: list):
        for col in col_list:
            cls.data[col] = preprocessing.scale(cls.data[col])

    @classmethod
    def select_as_y(cls, col: str):
        cls.data = pd.concat([cls.data[col], cls.data.drop(col, axis=1)], axis=1)
        cls.select_y_mark = True

    @classmethod
    def get_optimize_list(cls):
        return ["无", "网格搜索", "贝叶斯优化"]

    @classmethod
    def get_optimize_name_mapping(cls):
        return dict(zip(cls.get_optimize_list(), ["None", "grid_search", "bayes_search"]))

    @classmethod
    def get_linear_regression_model_list(cls):
        return ["线性回归", "Lasso回归", "Ridge回归", "弹性网络回归"]

    @classmethod
    def get_naive_bayes_classifier_model_list(cls):
        return ["多项式朴素贝叶斯分类", "高斯朴素贝叶斯分类", "补充朴素贝叶斯分类"]

    @classmethod
    def get_linear_regression_model_name_mapping(cls):
        return dict(zip(cls.get_linear_regression_model_list(), ["LinearRegression", "Lasso", "Ridge", "ElasticNet"]))

    @classmethod
    def get_naive_bayes_classifier_model_name_mapping(cls):
        return dict(zip(cls.get_naive_bayes_classifier_model_list(), ["MultinomialNB", "GaussianNB", "ComplementNB"]))

    @classmethod
    def train_model(cls, optimize, linear_regression_model_type=None, naive_bayes_classifier_model_type=None):
        optimize = cls.get_optimize_name_mapping()[optimize]

        data_copy = cls.data
        if cls.assign == MN.classification:
            data_copy = cls.encode_label([cls.data.columns.values[0]], True)

        x_train, x_test, y_train, y_test = train_test_split(
            data_copy.values[:, 1:],
            data_copy.values[:, :1],
            random_state=Config.RANDOM_STATE,
            train_size=0.8
        )
        container = Container(x_train, y_train, x_test, y_test, optimize)

        # [模型]
        if cls.cur_model == MN.linear_regression:
            cls.linear_regression_model_type = cls.get_linear_regression_model_name_mapping()[linear_regression_model_type]
            container = linear_regression(container, cls.linear_regression_model_type)
        elif cls.cur_model == MN.polynomial_regression:
            container = polynomial_regression(container)
        elif cls.cur_model == MN.logistic_regression:
            container = logistic_regression(container)
        elif cls.cur_model == MN.decision_tree_classifier:
            container = decision_tree_classifier(container)
        elif cls.cur_model == MN.random_forest_classifier:
            container = random_forest_classifier(container)
        elif cls.cur_model == MN.random_forest_regression:
            container = random_forest_regression(container)
        elif cls.cur_model == MN.xgboost_classifier:
            container = xgboost_classifier(container)
        elif cls.cur_model == MN.lightGBM_classifier:
            container = lightGBM_classifier(container)
        elif cls.cur_model == MN.gradient_boosting_regression:
            container = gradient_boosting_regression(container)
        elif cls.cur_model == MN.svm_classifier:
            container = svm_classifier(container)
        elif cls.cur_model == MN.svm_regression:
            container = svm_regression(container)
        elif cls.cur_model == MN.knn_classifier:
            container = knn_classifier(container)
        elif cls.cur_model == MN.knn_regression:
            container = knn_regression(container)
        elif cls.cur_model == MN.naive_bayes_classification:
            cls.naive_bayes_classifier_model_type = cls.get_naive_bayes_classifier_model_name_mapping()[naive_bayes_classifier_model_type]
            container = naive_bayes_classification(container, cls.naive_bayes_classifier_model_type)

        cls.container_dict[cls.cur_model] = container

    @classmethod
    def get_model_container_status(cls):
        return True if cls.cur_model != "" and cls.container_dict[cls.cur_model].get_status() == "trained" else False

    @classmethod
    def get_model_label(cls):
        return str(cls.get_model_name_mapping()[cls.cur_model]) + "模型是否完成训练" if cls.cur_model != "" else ""

    @classmethod
    def check_select_model(cls):
        return True if cls.cur_model != "" and cls.check_before_train() else False

    @classmethod
    def get_model_name(cls):
        return [x for x in cls.container_dict.keys()]

    # [模型]
    @classmethod
    def get_model_chinese_name(cls):
        return ["线性回归", "多项式回归", "逻辑斯谛分类", "决策树分类", "随机森林分类", "随机森林回归", "XGBoost分类", "LightGBM分类",
                "梯度提升回归", "支持向量机分类", "支持向量机回归", "K-最近邻分类", "K-最近邻回归", "朴素贝叶斯分类"]

    @classmethod
    def get_model_name_mapping(cls):
        return dict(zip(cls.get_model_name(), cls.get_model_chinese_name()))

    @classmethod
    def get_model_name_mapping_reverse(cls):
        return dict(zip(cls.get_model_chinese_name(), cls.get_model_name()))

    @classmethod
    def get_trained_model_list(cls):
        trained_model_list = []

        for model_name, container in cls.container_dict.items():
            if container.get_status() == "trained":
                trained_model_list.append(cls.get_model_name_mapping()[model_name])

        return trained_model_list

    @classmethod
    def draw_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        # [绘图]
        if cls.visualize == MN.learning_curve:
            return cls.draw_learning_curve_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
        elif cls.visualize == MN.shap_beeswarm:
            return cls.draw_shap_beeswarm_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
        elif cls.visualize == MN.data_fit:
            return cls.draw_data_fit_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
        elif cls.visualize == MN.waterfall:
            return cls.draw_waterfall_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
        elif cls.visualize == MN.force:
            return cls.draw_force_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
        elif cls.visualize == MN.dependence:
            return cls.draw_dependence_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
        elif cls.visualize == MN.data_distribution:
            return cls.draw_data_distribution_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
        elif cls.visualize == MN.descriptive_indicators:
            return cls.draw_descriptive_indicators_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
        elif cls.visualize == MN.heatmap:
            return cls.draw_heatmap_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)

    @classmethod
    def draw_heatmap_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        color_cur_list = [] if is_default else color_list
        x_cur_label = "Indicators" if is_default else x_label
        y_cur_label = "Value" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        paint_object.set_color_cur_list(color_cur_list)
        paint_object.set_x_cur_label(x_cur_label)
        paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        if cls.check_col_list(select_model.get_heatmap_col()):
            return cls.error_return_draw(paint_object)

        df = Dataset.data
        heatmap_col = select_model.get_heatmap_col()

        covX = np.around(np.corrcoef(df[heatmap_col].T), decimals=3)
        std_dev = np.sqrt(np.diag(covX))
        pearson_matrix = covX / np.outer(std_dev, std_dev)

        return draw_heat_map(pearson_matrix, heatmap_col, paint_object, select_model.get_heatmap_is_rotate())

    @classmethod
    def draw_descriptive_indicators_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        color_cur_list = [Config.COLORS[random.randint(0, 11)]]*3 if is_default else color_list
        x_cur_label = "Indicators" if is_default else x_label
        y_cur_label = "Value" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        paint_object.set_color_cur_list(color_cur_list)
        paint_object.set_x_cur_label(x_cur_label)
        paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        if cls.check_col_list(select_model.get_descriptive_indicators_col()):
            return cls.error_return_draw(paint_object)

        df = Dataset.data
        descriptive_indicators_col = select_model.get_descriptive_indicators_col()

        descriptive_indicators_df = pd.DataFrame(
            index=list(descriptive_indicators_col),
            columns=[
                "Name",
                "Min",
                "Max",
                "Avg",
                "Standard Deviation",
                "Standard Error",
                "Upper Quartile",
                "Median",
                "Lower Quartile",
                "Interquartile Distance",
                "Kurtosis",
                "Skewness",
                "Coefficient of Variation"
            ]
        )

        for col in descriptive_indicators_col:
            descriptive_indicators_df["Name"][col] = col
            descriptive_indicators_df["Min"][col] = df[col].min()
            descriptive_indicators_df["Max"][col] = df[col].max()
            descriptive_indicators_df["Avg"][col] = df[col].mean()
            descriptive_indicators_df["Standard Deviation"][col] = df[col].std()
            descriptive_indicators_df["Standard Error"][col] = descriptive_indicators_df["Standard Deviation"][
                                                                   col] / math.sqrt(len(df[col]))
            descriptive_indicators_df["Upper Quartile"][col] = df[col].quantile(0.75)
            descriptive_indicators_df["Median"][col] = df[col].quantile(0.5)
            descriptive_indicators_df["Lower Quartile"][col] = df[col].quantile(0.25)
            descriptive_indicators_df["Interquartile Distance"][col] = descriptive_indicators_df["Lower Quartile"][
                                                                           col] - \
                                                                       descriptive_indicators_df["Upper Quartile"][col]
            descriptive_indicators_df["Kurtosis"][col] = df[col].kurt()
            descriptive_indicators_df["Skewness"][col] = df[col].skew()
            descriptive_indicators_df["Coefficient of Variation"][col] = \
            descriptive_indicators_df["Standard Deviation"][col] / descriptive_indicators_df["Avg"][col]

        cls.descriptive_indicators_df = descriptive_indicators_df

        cur_df = df[descriptive_indicators_col].astype(float)

        return draw_boxplot(cur_df, paint_object, select_model.get_descriptive_indicators_is_rotate())

    @classmethod
    def error_return_draw(cls, paint_object):
        cur_plt = plt.Figure(figsize=(10, 8))
        return cur_plt, paint_object

    @classmethod
    def draw_data_distribution_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        cur_col = select_model.get_data_distribution_col()

        color_cur_list = [Config.COLORS[random.randint(0, 11)]] if is_default else color_list
        x_cur_label = cur_col if is_default else x_label
        y_cur_label = "Num" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        paint_object.set_color_cur_list(color_cur_list)
        paint_object.set_x_cur_label(x_cur_label)
        paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        if cls.check_col_list(select_model.get_data_distribution_col()):
            return cls.error_return_draw(paint_object)

        counts_mapping = {}
        for x in Dataset.data.loc[:, cur_col].values:
            if x in counts_mapping.keys():
                counts_mapping[x] += 1
            else:
                counts_mapping[x] = 1

        sorting = sorted(counts_mapping.items(), reverse=True, key=lambda m: m[1])
        nums = [x[1] for x in sorting]
        labels = [x[0] for x in sorting]

        if Dataset.check_data_distribution_type(cur_col) == "histogram":
            return draw_histogram(nums, labels, paint_object, select_model.get_data_distribution_is_rotate())
        else:
            return cls.error_return_draw(paint_object)

    @classmethod
    def draw_dependence_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        model_name = select_model.get_models()

        model_name = cls.get_model_name_mapping_reverse()[model_name]
        container = cls.container_dict[model_name]

        # color_cur_list = Config.COLORS if is_default else color_list
        # label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
        # x_cur_label = "Train Sizes" if is_default else x_label
        # y_cur_label = "Accuracy" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        # paint_object.set_color_cur_list(color_cur_list)
        # paint_object.set_label_cur_list(label_cur_list)
        # paint_object.set_x_cur_label(x_cur_label)
        # paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        return draw_dependence(container.get_model(), container.x_train, cls.data.columns.values.tolist()[1:], select_model.get_dependence_col(), paint_object)

    @classmethod
    def draw_force_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        model_name = select_model.get_models()

        model_name = cls.get_model_name_mapping_reverse()[model_name]
        container = cls.container_dict[model_name]

        # color_cur_list = Config.COLORS if is_default else color_list
        # label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
        # x_cur_label = "Train Sizes" if is_default else x_label
        # y_cur_label = "Accuracy" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        # paint_object.set_color_cur_list(color_cur_list)
        # paint_object.set_label_cur_list(label_cur_list)
        # paint_object.set_x_cur_label(x_cur_label)
        # paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        return draw_force(container.get_model(), container.x_train, cls.data.columns.values.tolist()[1:], select_model.get_force_number(), paint_object)

    @classmethod
    def draw_waterfall_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        model_name = select_model.get_models()

        model_name = cls.get_model_name_mapping_reverse()[model_name]
        container = cls.container_dict[model_name]

        # color_cur_list = Config.COLORS if is_default else color_list
        # label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
        # x_cur_label = "Train Sizes" if is_default else x_label
        # y_cur_label = "Accuracy" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        # paint_object.set_color_cur_list(color_cur_list)
        # paint_object.set_label_cur_list(label_cur_list)
        # paint_object.set_x_cur_label(x_cur_label)
        # paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        return draw_waterfall(container.get_model(), container.x_train, cls.data.columns.values.tolist()[1:], select_model.get_waterfall_number(), paint_object)

    @classmethod
    def draw_learning_curve_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        cur_dict = {}

        model_list = select_model.get_models()

        for model_name in model_list:
            model_name = cls.get_model_name_mapping_reverse()[model_name]
            cur_dict[model_name] = cls.container_dict[model_name].get_learning_curve_values()

        color_cur_list = Config.COLORS if is_default else color_list
        if is_default:
            label_cur_list = []
            for x in cur_dict.keys():
                label_cur_list.append("train " + str(x))
                label_cur_list.append("validation " + str(x))
        else:
            label_cur_list = label_list

        x_cur_label = "Train Sizes" if is_default else x_label
        y_cur_label = "Accuracy" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        paint_object.set_color_cur_list(color_cur_list)
        paint_object.set_label_cur_list(label_cur_list)
        paint_object.set_x_cur_label(x_cur_label)
        paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        if cls.check_cur_dict(cur_dict):
            return cls.error_return_draw(paint_object)

        return draw_learning_curve_total(cur_dict, paint_object)

    @classmethod
    def draw_shap_beeswarm_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        model_name = select_model.get_models()

        model_name = cls.get_model_name_mapping_reverse()[model_name]
        container = cls.container_dict[model_name]

        # color_cur_list = Config.COLORS if is_default else color_list
        # label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
        # x_cur_label = "Train Sizes" if is_default else x_label
        # y_cur_label = "Accuracy" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        # paint_object.set_color_cur_list(color_cur_list)
        # paint_object.set_label_cur_list(label_cur_list)
        # paint_object.set_x_cur_label(x_cur_label)
        # paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        return draw_shap_beeswarm(container.get_model(), container.x_train, cls.data.columns.values.tolist()[1:], select_model.get_beeswarm_plot_type(), paint_object)

    @classmethod
    def draw_data_fit_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        cur_dict = {}

        model_list = select_model.get_models()

        for model_name in model_list:
            model_name = cls.get_model_name_mapping_reverse()[model_name]
            cur_dict[model_name] = cls.container_dict[model_name].get_data_fit_values()

        color_cur_list = Config.COLORS if is_default else color_list
        if is_default:
            label_cur_list = []
            for x in cur_dict.keys():
                label_cur_list.append("pred " + str(x))
            label_cur_list.append("real data")
        else:
            label_cur_list = label_list

        x_cur_label = "n value" if is_default else x_label
        y_cur_label = "y value" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        paint_object.set_color_cur_list(color_cur_list)
        paint_object.set_label_cur_list(label_cur_list)
        paint_object.set_x_cur_label(x_cur_label)
        paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        return draw_data_fit_total(cur_dict, paint_object)

    @classmethod
    def get_shap_beeswarm_plot_type(cls):
        return ["bar", "violin"]

    @classmethod
    def get_file(cls):
        # [绘图]
        if cls.visualize == MN.learning_curve:
            return FilePath.png_base.format(FilePath.learning_curve_plot)
        elif cls.visualize == MN.shap_beeswarm:
            return FilePath.png_base.format(FilePath.shap_beeswarm_plot)
        elif cls.visualize == MN.data_fit:
            return FilePath.png_base.format(FilePath.data_fit_plot)
        elif cls.visualize == MN.waterfall:
            return FilePath.png_base.format(FilePath.waterfall_plot)
        elif cls.visualize == MN.force:
            return FilePath.png_base.format(FilePath.force_plot)
        elif cls.visualize == MN.dependence:
            return FilePath.png_base.format(FilePath.dependence_plot)
        elif cls.visualize == MN.data_distribution:
            return FilePath.png_base.format(FilePath.data_distribution_plot)
        elif cls.visualize == MN.descriptive_indicators:
            return FilePath.png_base.format(FilePath.descriptive_indicators_plot)
        elif cls.visualize == MN.heatmap:
            return FilePath.png_base.format(FilePath.heatmap_plot)

    @classmethod
    def check_file(cls):
        return os.path.exists(cls.get_file())

    @classmethod
    def after_get_file(cls):
        return cls.get_file() if cls.check_file() else None

    @classmethod
    def get_model_list(cls):
        model_list = []
        for model_name in cls.container_dict.keys():
            model_list.append(cls.get_model_name_mapping()[model_name])

        return model_list

    @classmethod
    def select_as_model(cls, model_name: str):
        cls.cur_model = cls.get_model_name_mapping_reverse()[model_name]

    @classmethod
    def get_model_mark(cls):
        return True if cls.cur_model != "" else False

    @classmethod
    def get_linear_regression_mark(cls):
        return True if cls.cur_model == MN.linear_regression else False

    @classmethod
    def get_naive_bayes_classifier_mark(cls):
        return True if cls.cur_model == MN.naive_bayes_classification else False

    @classmethod
    def get_assign_list(cls):
        return ["分类", "回归"]

    @classmethod
    def get_assign_mapping_reverse(cls):
        return dict(zip(cls.get_assign_list(), [MN.classification, MN.regression]))

    @classmethod
    def choose_assign(cls, assign: str):
        cls.assign = cls.get_assign_mapping_reverse()[assign]

        data_copy = cls.data

        if cls.assign == MN.classification:
            data_copy.iloc[:, 0] = data_copy.iloc[:, 0].astype(str)
        else:
            data_copy.iloc[:, 0] = data_copy.iloc[:, 0].astype(float)

        cls.data = data_copy
        cls.change_data_type_to_float()

    @classmethod
    def colorpickers_change(cls, paint_object):
        cur_num = paint_object.get_color_cur_num()

        true_list = [gr.ColorPicker(paint_object.get_color_cur_list()[i], visible=True, label=LN.colors[i]) for i in range(cur_num)]

        return true_list + [gr.ColorPicker(visible=False)] * (StaticValue.max_num - cur_num)

    @classmethod
    def color_textboxs_change(cls, paint_object):
        cur_num = paint_object.get_color_cur_num()

        true_list = [gr.Textbox(paint_object.get_color_cur_list()[i], visible=True, show_label=False) for i in range(cur_num)]

        return true_list + [gr.Textbox(visible=False)] * (StaticValue.max_num - cur_num)

    @classmethod
    def labels_change(cls, paint_object):
        cur_num = paint_object.get_label_cur_num()

        true_list = [gr.Textbox(paint_object.get_label_cur_list()[i], visible=True, label=LN.labels[i]) for i in range(cur_num)]

        return true_list + [gr.Textbox(visible=False)] * (StaticValue.max_num - cur_num)

    @classmethod
    def get_model_train_metrics_dataframe(cls):
        if cls.cur_model != "" and cls.get_model_container_status():
            columns_list = ["指标", "数值"]

            output_dict = cls.container_dict[cls.cur_model].get_info()["指标"]

            output_df = pd.DataFrame(columns=columns_list)
            output_df["指标"] = [x for x in output_dict.keys() if x in ChooseModelMetrics.choose(cls.cur_model)]
            output_df["数值"] = [output_dict[x] for x in output_df["指标"]]

            return output_df

    @classmethod
    def get_model_train_params_dataframe(cls):
        if cls.cur_model != "" and cls.get_model_container_status():
            columns_list = ["参数", "数值"]

            output_dict = cls.container_dict[cls.cur_model].get_info()["参数"]

            output_df = pd.DataFrame(columns=columns_list)
            output_df["参数"] = [x for x in output_dict.keys() if x in ChooseModelParams.choose(cls.cur_model).keys()]
            output_df["数值"] = [output_dict[x] for x in output_df["参数"]]

            return output_df

    @classmethod
    def get_str_col_list(cls):
        str_col_list = []
        for col in cls.get_col_list():
            if all(isinstance(x, str) for x in cls.data.loc[:, col]):
                str_col_list.append(col)

        return str_col_list

    @classmethod
    def get_float_col_list(cls):
        float_col_list = []
        for col in cls.get_col_list():
            if all(isinstance(x, float) for x in cls.data.loc[:, col]):
                float_col_list.append(col)

        return float_col_list

    @classmethod
    def check_data_distribution_type(cls, col):
        if all(isinstance(x, str) for x in cls.data.loc[:, col]):
            return "histogram"
        # elif all(isinstance(x, float) for x in cls.data.loc[:, col]):
        #     return "line_graph"
        else:
            gr.Warning("所选列的所有数据必须为字符型或浮点型")

    @classmethod
    def check_col_list(cls, col):
        if not col:
            gr.Warning("请选择所需列")
            return True
        return False

    @classmethod
    def check_train_model(cls, optimize):
        if cls.cur_model == "":
            gr.Warning("请选择所需训练的模型")
            return True
        if not optimize:
            gr.Warning("请选择超参数优化方法")
            return True
        return False

    @classmethod
    def error_return_train(cls):
        return get_return(True)

    @classmethod
    def check_train_model_other_related(cls, linear_regression_model_type, naive_bayes_classifier_model_type):
        if cls.cur_model == MN.linear_regression:
            if not linear_regression_model_type:
                gr.Warning("请选择线性回归对应的模型")
                return True
        elif cls.cur_model == MN.naive_bayes_classification:
            if not naive_bayes_classifier_model_type:
                gr.Warning("请选择朴素贝叶斯对应的模型")
                return True
        return False

    @classmethod
    def check_cur_dict(cls, cur_dict):
        if not cur_dict:
            gr.Warning("请选择绘图所需的模型")
            return True
        return False


def choose_assign(assign: str):
    Dataset.choose_assign(assign)

    return get_return(True)


def select_as_model(model_name: str):
    Dataset.select_as_model(model_name)

    return get_return(True)


# [绘图]
def heatmap_first_draw_plot(*inputs):
    Dataset.visualize = MN.heatmap
    return before_train_first_draw_plot(inputs)


def descriptive_indicators_first_draw_plot(*inputs):
    Dataset.visualize = MN.descriptive_indicators
    return before_train_first_draw_plot(inputs)


def data_distribution_first_draw_plot(*inputs):
    Dataset.visualize = MN.data_distribution
    return before_train_first_draw_plot(inputs)


def dependence_first_draw_plot(*inputs):
    Dataset.visualize = MN.dependence
    return first_draw_plot(inputs)


def force_first_draw_plot(*inputs):
    Dataset.visualize = MN.force
    return first_draw_plot(inputs)


def waterfall_first_draw_plot(*inputs):
    Dataset.visualize = MN.waterfall
    return first_draw_plot(inputs)


def data_fit_first_draw_plot(*inputs):
    Dataset.visualize = MN.data_fit
    return first_draw_plot(inputs)


def shap_beeswarm_first_draw_plot(*inputs):
    Dataset.visualize = MN.shap_beeswarm
    return first_draw_plot(inputs)


def learning_curve_first_draw_plot(*inputs):
    Dataset.visualize = MN.learning_curve
    return first_draw_plot(inputs)


def before_train_first_draw_plot(inputs):
    select_model = SelectModel()
    x_label = ""
    y_label = ""
    name = ""
    color_list = []
    label_list = []

    # [绘图][无训练模型]
    if Dataset.visualize == MN.data_distribution:
        select_model.set_data_distribution_col(inputs[0])
        select_model.set_data_distribution_is_rotate(inputs[1])
    elif Dataset.visualize == MN.descriptive_indicators:
        select_model.set_descriptive_indicators_is_rotate(inputs[0])
        select_model.set_descriptive_indicators_col(inputs[1])
    elif Dataset.visualize == MN.heatmap:
        select_model.set_heatmap_col(inputs[0])
        select_model.set_heatmap_is_rotate(inputs[1])

    cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, True)

    return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object)


def first_draw_plot(inputs):
    select_model = SelectModel()
    select_model.set_models(inputs[0])
    x_label = ""
    y_label = ""
    name = ""
    color_list = []
    label_list = []

    # [绘图][有训练模型]
    if Dataset.visualize == MN.shap_beeswarm:
        select_model.set_beeswarm_plot_type(inputs[1])
    elif Dataset.visualize == MN.waterfall:
        select_model.set_waterfall_number(inputs[1])
    elif Dataset.visualize == MN.force:
        select_model.set_force_number(inputs[1])
    elif Dataset.visualize == MN.dependence:
        select_model.set_dependence_col(inputs[1])

    cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, True)

    return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object)


def out_non_first_draw_plot(*inputs):
    return non_first_draw_plot(inputs)


def non_first_draw_plot(inputs):
    name = inputs[0]
    x_label = inputs[1]
    y_label = inputs[2]
    color_list = list(inputs[3: StaticValue.max_num+3])
    label_list = list(inputs[StaticValue.max_num+3: 2*StaticValue.max_num+3])
    start_index = 2*StaticValue.max_num+3

    select_model = SelectModel()

    # 绘图
    if Dataset.visualize == MN.learning_curve:
        select_model.set_models(inputs[start_index+0])
        select_model.set_beeswarm_plot_type(inputs[start_index+1])
    elif Dataset.visualize == MN.shap_beeswarm:
        select_model.set_models(inputs[start_index+2])
    elif Dataset.visualize == MN.data_fit:
        select_model.set_models(inputs[start_index+3])
    elif Dataset.visualize == MN.waterfall:
        select_model.set_models(inputs[start_index+4])
        select_model.set_waterfall_number(inputs[start_index+5])
    elif Dataset.visualize == MN.force:
        select_model.set_models(inputs[start_index+6])
        select_model.set_force_number(inputs[start_index+7])
    elif Dataset.visualize == MN.dependence:
        select_model.set_models(inputs[start_index+8])
        select_model.set_dependence_col(inputs[start_index+9])
    elif Dataset.visualize == MN.data_distribution:
        select_model.set_data_distribution_col(inputs[start_index+10])
        select_model.set_data_distribution_is_rotate(inputs[start_index+11])
    elif Dataset.visualize == MN.descriptive_indicators:
        select_model.set_descriptive_indicators_is_rotate(inputs[start_index+12])
        select_model.set_descriptive_indicators_col(inputs[start_index+13])
    elif Dataset.visualize == MN.descriptive_indicators:
        select_model.set_heatmap_col(inputs[start_index+14])
        select_model.set_heatmap_is_rotate(inputs[start_index+15])

    else:
        select_model.set_models(inputs[start_index])

    cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, False)

    return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object)


def first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object):
    extra_gr_dict = {}

    # [绘图]
    if Dataset.visualize == MN.learning_curve:
        cur_plt.savefig(FilePath.png_base.format(FilePath.learning_curve_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.learning_curve_plot)})
    elif Dataset.visualize == MN.shap_beeswarm:
        cur_plt.savefig(FilePath.png_base.format(FilePath.shap_beeswarm_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.shap_beeswarm_plot)})
    elif Dataset.visualize == MN.data_fit:
        cur_plt.savefig(FilePath.png_base.format(FilePath.data_fit_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.data_fit_plot)})
    elif Dataset.visualize == MN.waterfall:
        cur_plt.savefig(FilePath.png_base.format(FilePath.waterfall_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.waterfall_plot)})
    elif Dataset.visualize == MN.force:
        cur_plt.savefig(FilePath.png_base.format(FilePath.force_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.force_plot)})
    elif Dataset.visualize == MN.dependence:
        cur_plt.savefig(FilePath.png_base.format(FilePath.dependence_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.dependence_plot)})
    elif Dataset.visualize == MN.data_distribution:
        cur_plt.savefig(FilePath.png_base.format(FilePath.data_distribution_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.data_distribution_plot)})
    elif Dataset.visualize == MN.descriptive_indicators:
        cur_plt.savefig(FilePath.png_base.format(FilePath.descriptive_indicators_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.descriptive_indicators_plot)})
        extra_gr_dict.update({descriptive_indicators_dataframe: gr.Dataframe(Dataset.get_descriptive_indicators_df(), type="pandas", visible=Dataset.check_descriptive_indicators_df())})
    elif Dataset.visualize == MN.heatmap:
        cur_plt.savefig(FilePath.png_base.format(FilePath.heatmap_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.heatmap_plot)})

    extra_gr_dict.update(dict(zip(colorpickers, Dataset.colorpickers_change(paint_object))))
    extra_gr_dict.update(dict(zip(color_textboxs, Dataset.color_textboxs_change(paint_object))))
    extra_gr_dict.update(dict(zip(legend_labels_textboxs, Dataset.labels_change(paint_object))))
    extra_gr_dict.update({title_name_textbox: gr.Textbox(paint_object.get_name(), visible=True, label=LN.title_name_textbox)})
    extra_gr_dict.update({x_label_textbox: gr.Textbox(paint_object.get_x_cur_label(), visible=True, label=LN.x_label_textbox)})
    extra_gr_dict.update({y_label_textbox: gr.Textbox(paint_object.get_y_cur_label(), visible=True, label=LN.y_label_textbox)})

    return get_return_extra(True, extra_gr_dict)


# [模型]
def train_model(optimize, linear_regression_model_type, naive_bayes_classifier_model_type):
    if Dataset.check_train_model(optimize):
        return Dataset.error_return_train()

    if Dataset.check_train_model_other_related(linear_regression_model_type, naive_bayes_classifier_model_type):
        return Dataset.error_return_train()

    Dataset.train_model(optimize, linear_regression_model_type, naive_bayes_classifier_model_type)

    return get_return(True)


def select_as_y(col: str):
    Dataset.select_as_y(col)

    return get_return(True)


def standardize_data(col_list: list):
    Dataset.standardize_data(col_list)

    return get_return(True)


def change_data_type_to_float():
    Dataset.change_data_type_to_float()

    return get_return(True)


def encode_label(col_list: list):
    Dataset.encode_label(col_list)

    return get_return(True, {display_encode_label_dataframe: gr.Dataframe(Dataset.get_str2int_mappings_df(), type="pandas", visible=True, label=LN.display_encode_label_dataframe)})


def del_duplicate():
    Dataset.del_duplicate()

    return get_return(True)


def del_all_na_col():
    Dataset.del_all_na_col()

    return get_return(True)


def remain_row(num):
    Dataset.remain_row(num)

    return get_return(True)


def del_col(col_list: list):
    Dataset.del_col(col_list)

    return get_return(True)


def add_index_into_df(df: pd.DataFrame) -> pd.DataFrame:
    if df.empty:
        return df

    index_df = pd.DataFrame([x for x in range(len(df))], columns=["[*index]"])

    return pd.concat([index_df, df], axis=1)


def choose_dataset(file: str):
    if file == "自定义":
        Dataset.clear()

        return get_return(False)

    df = load_data(file)
    Dataset.update(file, df)

    return get_return(True, {choose_custom_dataset_file: gr.File(visible=False)})


def choose_custom_dataset(file: str):
    df = load_custom_data(file)
    Dataset.update(file, df)

    return get_return(True, {choose_custom_dataset_file: gr.File(Dataset.file, visible=True)})


with gr.Blocks(js=Config.JS_0) as demo:
    '''
        组件
    '''

    with gr.Tab("机器学习"):
        # 选择数据源
        with gr.Accordion("数据源"):
            with gr.Group():
                choose_dataset_radio = gr.Radio(Dataset.get_dataset_list(), label=LN.choose_dataset_radio)
                choose_custom_dataset_file = gr.File(visible=False)

        # 显示数据表信息
        with gr.Accordion("当前数据信息"):
            display_dataset_dataframe = gr.Dataframe(visible=False)
            display_dataset = gr.File(visible=False)
            with gr.Row():
                display_total_col_num_text = gr.Textbox(visible=False)
                display_total_row_num_text = gr.Textbox(visible=False)
                with gr.Column():
                    remain_row_slider = gr.Slider(visible=False)
                    remain_row_button = gr.Button(visible=False)
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        display_na_list_text = gr.Textbox(visible=False)
                        display_duplicate_num_text = gr.Textbox(visible=False)
                    with gr.Row():
                        del_all_na_col_button = gr.Button(visible=False)
                        del_duplicate_button = gr.Button(visible=False)

        # 操作数据表
        with gr.Accordion("数据处理"):
            select_as_y_radio = gr.Radio(visible=False)
            with gr.Row():
                with gr.Column():
                    data_type_dataframe = gr.Dataframe(visible=False)
                    change_data_type_to_float_button = gr.Button(visible=False)
                    choose_assign_radio = gr.Radio(visible=False)
                with gr.Column():
                    del_col_checkboxgroup = gr.Checkboxgroup(visible=False)
                    del_col_button = gr.Button(visible=False)
                    encode_label_checkboxgroup = gr.Checkboxgroup(visible=False)
                    encode_label_button = gr.Button(visible=False)
                    display_encode_label_dataframe = gr.Dataframe(visible=False)
                    standardize_data_checkboxgroup = gr.Checkboxgroup(visible=False)
                    standardize_data_button = gr.Button(visible=False)

        # 数据模型
        with gr.Accordion("数据模型"):
            # [模型]
            select_as_model_radio = gr.Radio(visible=False)
            linear_regression_model_radio = gr.Radio(visible=False)
            naive_bayes_classification_model_radio = gr.Radio(visible=False)
            model_optimize_radio = gr.Radio(visible=False)
            model_train_button = gr.Button(visible=False)
            model_train_checkbox = gr.Checkbox(visible=False)
            model_train_params_dataframe = gr.Dataframe(visible=False)
            model_train_metrics_dataframe = gr.Dataframe(visible=False)

        # 可视化
        with gr.Accordion("数据可视化"):
            with gr.Tab("数据分布图"):
                data_distribution_radio = gr.Radio(visible=False)
                data_distribution_is_rotate = gr.Checkbox(visible=False)
                data_distribution_button = gr.Button(visible=False)

            with gr.Tab("箱线统计图"):
                descriptive_indicators_checkboxgroup = gr.Checkboxgroup(visible=False)
                descriptive_indicators_is_rotate = gr.Checkbox(visible=False)
                descriptive_indicators_button = gr.Button(visible=False)
                descriptive_indicators_dataframe = gr.Dataframe(visible=False)

            with gr.Tab("系数热力图"):
                heatmap_checkboxgroup = gr.Checkboxgroup(visible=False)
                heatmap_is_rotate = gr.Checkbox(visible=False)
                heatmap_button = gr.Button(visible=False)

            # with gr.Tab("主成分分析"):
            #     pca_button = gr.Button(visible=False)
            #     pca_replace_data_button = gr.Button(visible=False)


            with gr.Tab("学习曲线图"):
                learning_curve_checkboxgroup = gr.Checkboxgroup(visible=False)
                learning_curve_button = gr.Button(visible=False)

            with gr.Tab("数据拟合图"):
                data_fit_checkboxgroup = gr.Checkboxgroup(visible=False)
                data_fit_button = gr.Button(visible=False)

            with gr.Tab("特征蜂群图"):
                shap_beeswarm_radio = gr.Radio(visible=False)
                shap_beeswarm_type = gr.Radio(visible=False)
                shap_beeswarm_button = gr.Button(visible=False)

            with gr.Tab("特征瀑布图"):
                waterfall_radio = gr.Radio(visible=False)
                waterfall_number = gr.Slider(visible=False)
                waterfall_button = gr.Button(visible=False)

            with gr.Tab("特征力图"):
                force_radio = gr.Radio(visible=False)
                force_number = gr.Slider(visible=False)
                force_button = gr.Button(visible=False)

            with gr.Tab("特征依赖图"):
                dependence_radio = gr.Radio(visible=False)
                dependence_col = gr.Radio(visible=False)
                dependence_button = gr.Button(visible=False)

            legend_labels_textboxs = []
            with gr.Accordion("图例"):
                with gr.Row():
                    for i in range(StaticValue.max_num):
                        with gr.Row():
                            label = gr.Textbox(visible=False)
                            legend_labels_textboxs.append(label)

            with gr.Accordion("坐标轴"):
                with gr.Row():
                    title_name_textbox = gr.Textbox(visible=False)
                    x_label_textbox = gr.Textbox(visible=False)
                    y_label_textbox = gr.Textbox(visible=False)

            colorpickers = []
            color_textboxs = []
            with gr.Accordion("颜色"):
                with gr.Row():
                    for i in range(StaticValue.max_num):
                        with gr.Row():
                            colorpicker = gr.ColorPicker(visible=False)
                            colorpickers.append(colorpicker)
                            color_textbox = gr.Textbox(visible=False)
                            color_textboxs.append(color_textbox)

            draw_plot = gr.Plot(visible=False)
            draw_file = gr.File(visible=False)

    with gr.Tab("文字说明"):
        notes = gr.Markdown(Dataset.get_notes(), visible=True)

    '''
        监听事件
    '''

    # 选择数据源
    choose_dataset_radio.change(fn=choose_dataset, inputs=[choose_dataset_radio], outputs=get_outputs())
    choose_custom_dataset_file.upload(fn=choose_custom_dataset, inputs=[choose_custom_dataset_file], outputs=get_outputs())

    # 操作数据表

    # 删除所选列
    del_col_button.click(fn=del_col, inputs=[del_col_checkboxgroup], outputs=get_outputs())
    # 保留行
    remain_row_button.click(fn=remain_row, inputs=[remain_row_slider], outputs=get_outputs())
    # 删除所有存在缺失值的列
    del_all_na_col_button.click(fn=del_all_na_col, outputs=get_outputs())
    # 删除所有重复的行
    del_duplicate_button.click(fn=del_duplicate, outputs=get_outputs())
    # 字符型列转数值型列
    encode_label_button.click(fn=encode_label, inputs=[encode_label_checkboxgroup], outputs=get_outputs())
    # 将所有数据强制转换为浮点型(除第1列之外)
    change_data_type_to_float_button.click(fn=change_data_type_to_float, outputs=get_outputs())
    # 标准化数据
    standardize_data_button.click(fn=standardize_data, inputs=[standardize_data_checkboxgroup], outputs=get_outputs())
    # 选择因变量
    select_as_y_radio.change(fn=select_as_y, inputs=[select_as_y_radio], outputs=get_outputs())
    # 选择任务类型(强制转换第1列)
    choose_assign_radio.change(fn=choose_assign, inputs=[choose_assign_radio], outputs=get_outputs())

    # 数据模型
    select_as_model_radio.change(fn=select_as_model, inputs=[select_as_model_radio], outputs=get_outputs())

    # [模型]
    model_train_button.click(fn=train_model, inputs=[model_optimize_radio, linear_regression_model_radio, naive_bayes_classification_model_radio], outputs=get_outputs())

    # [绘图]

    # 可视化
    data_distribution_button.click(fn=data_distribution_first_draw_plot, inputs=[data_distribution_radio] + [data_distribution_is_rotate], outputs=get_outputs())
    descriptive_indicators_button.click(fn=descriptive_indicators_first_draw_plot, inputs=[descriptive_indicators_is_rotate] + [descriptive_indicators_checkboxgroup], outputs=get_outputs())
    heatmap_button.click(fn=heatmap_first_draw_plot, inputs=[heatmap_checkboxgroup] + [heatmap_is_rotate], outputs=get_outputs())
    learning_curve_button.click(fn=learning_curve_first_draw_plot, inputs=[learning_curve_checkboxgroup], outputs=get_outputs())
    shap_beeswarm_button.click(fn=shap_beeswarm_first_draw_plot, inputs=[shap_beeswarm_radio] + [shap_beeswarm_type], outputs=get_outputs())
    data_fit_button.click(fn=data_fit_first_draw_plot, inputs=[data_fit_checkboxgroup], outputs=get_outputs())
    waterfall_button.click(fn=waterfall_first_draw_plot, inputs=[waterfall_radio] + [waterfall_number], outputs=get_outputs())
    force_button.click(fn=force_first_draw_plot, inputs=[force_radio] + [force_number], outputs=get_outputs())
    dependence_button.click(fn=dependence_first_draw_plot, inputs=[dependence_radio] + [dependence_col], outputs=get_outputs())

    title_name_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
                                                               + [learning_curve_checkboxgroup] + [shap_beeswarm_radio] + [shap_beeswarm_type] + [data_fit_checkboxgroup] + [waterfall_radio] + [waterfall_number]
                                                               + [force_radio] + [force_number] + [dependence_radio] + [dependence_col] + [data_distribution_radio] + [data_distribution_is_rotate]
                            + [descriptive_indicators_is_rotate] + [descriptive_indicators_checkboxgroup] + [heatmap_checkboxgroup] + [heatmap_is_rotate], outputs=get_outputs())

    x_label_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
                                                            + [learning_curve_checkboxgroup] + [shap_beeswarm_radio] + [shap_beeswarm_type] + [data_fit_checkboxgroup] + [waterfall_radio] + [waterfall_number]
                                                            + [force_radio] + [force_number] + [dependence_radio] + [dependence_col] + [data_distribution_radio] + [data_distribution_is_rotate]
                         + [descriptive_indicators_is_rotate] + [descriptive_indicators_checkboxgroup] + [heatmap_checkboxgroup] + [heatmap_is_rotate], outputs=get_outputs())

    y_label_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
                                                            + [learning_curve_checkboxgroup] + [shap_beeswarm_radio] + [shap_beeswarm_type] + [data_fit_checkboxgroup] + [waterfall_radio] + [waterfall_number]
                                                            + [force_radio] + [force_number] + [dependence_radio] + [dependence_col] + [data_distribution_radio] + [data_distribution_is_rotate]
                         + [descriptive_indicators_is_rotate] + [descriptive_indicators_checkboxgroup] + [heatmap_checkboxgroup] + [heatmap_is_rotate], outputs=get_outputs())

    for i in range(StaticValue.max_num):
        colorpickers[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
                                                                + [learning_curve_checkboxgroup] + [shap_beeswarm_radio] + [shap_beeswarm_type] + [data_fit_checkboxgroup] + [waterfall_radio] + [waterfall_number]
                                                                + [force_radio] + [force_number] + [dependence_radio] + [dependence_col] + [data_distribution_radio] + [data_distribution_is_rotate]
                             + [descriptive_indicators_is_rotate] + [descriptive_indicators_checkboxgroup] + [heatmap_checkboxgroup] + [heatmap_is_rotate], outputs=get_outputs())

        color_textboxs[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + color_textboxs + legend_labels_textboxs
                                                                  + [learning_curve_checkboxgroup] + [shap_beeswarm_radio] + [shap_beeswarm_type] + [data_fit_checkboxgroup] + [waterfall_radio] + [waterfall_number]
                                                                  + [force_radio] + [force_number] + [dependence_radio] + [dependence_col] + [data_distribution_radio] + [data_distribution_is_rotate]
                               + [descriptive_indicators_is_rotate] + [descriptive_indicators_checkboxgroup] + [heatmap_checkboxgroup] + [heatmap_is_rotate], outputs=get_outputs())

        legend_labels_textboxs[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
                                                                          + [learning_curve_checkboxgroup] + [shap_beeswarm_radio] + [shap_beeswarm_type] + [data_fit_checkboxgroup] + [waterfall_radio] + [waterfall_number]
                                                                          + [force_radio] + [force_number] + [dependence_radio] + [dependence_col] + [data_distribution_radio] + [data_distribution_is_rotate]
                                       + [descriptive_indicators_is_rotate] + [descriptive_indicators_checkboxgroup] + [heatmap_checkboxgroup] + [heatmap_is_rotate], outputs=get_outputs())

if __name__ == "__main__":
    demo.launch()